

CONFIDENCIAL

DEPARTAMENTO DE GEOTECNIA Núcleo de Geologia de Engenharia e Geotecnia Ambiental

Proc. 0607/1/17171 Proc. Int. 0504/541/1279

ANÁLISE E PARECER SOBRE A SITUAÇÃO NAS ÁREAS DE CAPTAÇÃO DOS FUROS DE ABASTECIMENTO DO CONCELHO DE PRAIA DA VITÓRIA, ILHA TERCEIRA – AÇORES

Relatório de avaliação da caracterização da contaminação de solos junto a potenciais focos de poluição

Estudo realizado para a Câmara Municipal de Praia da Vitória

Lisboa • Novembro de 2010

I&D GEOTECNIA

RELATÓRIO 386/2010 - NGEA

Análise e Parecer Sobre a Situação nas Áreas de Captação dos Furos de Abastecimento do Concelho de Praia da Vitória, Ilha Terceira – Açores

Relatório de Caracterização da Contaminação de Solos Junto a Potenciais Focos de Poluição

Analysis and Technical Report About the Enviromental Situation of Praia da Vitória County Supply Wells, Terceira Island – Azores

Report on the Characterization of Soil Contamination Next Potential Spots of Pollution

Analyse et Avis Thechnique Sur la Situation Environnementale des Puits de Bombage de la Municipalité de Praia da Vitória, Île Terceira – Azores Rapport de Charactérisation de la Contamination des Sols Près des Potentielles Origines de Pollution

Página em Branco

ÍNDICE DO TEXTO

1. Intro	DUÇÃO	1
2. DESCI	RIÇÃO DO LOCAL	Ę
2.1	Localização e algumas características	E
2.2	História do local	6
3. ENQU	ADRAMENTO GEOLÓGICO	17
4. Crité	rios de Exposição/Remediação	19
4.1	Generalidades	
4.2	Orgânicos	
4.3	Metais	
5. AVALI	ação das Consequências das Actividades Desenvolvidas	24
5.1	Informação	
5.2	Amostragem ambiental	
5.3	Locais de Amostragem	
5.3.1	Sondagens S1A e S1B	
5.3.2	Sondagens S2A e S2B	35
5.3.3	Sondagens S3A e S3B	36
5.3.4	Sondagens S4A e S4B	37
5.3.5	Sondagens S5A e S5B	38
5.3.6	Sondagens S6A e S6B	38
5.3.7	Sondagens S7A e S7B	38
5.3.8	Sondagens S7A e S7B	38
5.4	Amostras Regionais	43
5.5	Preparação das amostras	45
5.6	Controlo de Qualidade	52
5.7	Determinações analíticas	52
6. RESUI	LTADOS OBTIDOS E RESPECTIVA INTERPRETAÇÃO	54
6.1	Resultados obtidos	54
6.1.1	Análises on site	54
6.1.2	Análises laboratoriais	54
6.2	Interpretação de resultados	64
6.2.1	Análises on site	64
6.2.2	Análises laboratóriais	65

6.3	Controlo de Qualidade	66
6.4	Outros Parâmetros	68
7. Cons	DERAÇÕES FINAIS E CONCLUSÕES	69
Bibliogr	rafia	72
ANEXO	1 – Planta de localização	73
ANEXO	2 – Sondagens Mecânicas/piezómetros e Caixas de Amostras	77
ANEXO	3 – RESULTADOS DOS ENSAIOS MULTI-PID E FRX	125
ANEXO	4 – Procedimentos Laboratoriais e Respectivos Resultados	145
ANEXO 4	4.1 – RELATÓRIO DE AMOSTRAGEM	147
ANEXO 4	4.2 – PROCEDIMENTOS DE DUPLICAÇÃO DE AMOSTRAS	153
ANEXO 4	4.3 – FOLHAS DE REGISTO	157
ANEXO 4	4.4 –NOTIFICAÇÃO DA RECEPÇÃO DE AMOSTRAS E CONFIRMAÇÃO DAS ANÁLISES SOLICITADAS	171
ANEXO 4	4.5 – Controlo de Qualidade Interno	177
ANEXO 4	4.6 – Resultados Analíticos	195

ÍNDICE DE FIGURAS

Figura 26 – Aspecto das condições do local onde se realizou a sondagem S4 3	;7
Figura 27 – Aspecto geral da área onde se realizaram as sondagens S5A e S5B 3	8
Figura 28 – Aspecto das condições dos locais onde se realizaram as sondagens S5A e S5B 3	39
Figura 29 – Aspecto geral da área onde se realizaram as sondagens S6A e S6B. Marcação da sondagem S6B 4	
Figura 30 – Realização da sondagem S6A 4	0
Figura 31 – Aspecto geral da área onde se realizaram as sondagens S7A e S7B 4	1
Figura 32 – Realização da sondagem S7B 4	1
Figura 33 – Realização da sondagem S8 4	2
Figura 34 – Aspecto do sistema de tamponamento do piezómetro instalado na sondagem S8 4	2
Figura 35 – Localização das amostras regionais 4	3
Figura 36 – Coberto vegetal do local de colheita da amostra regional 2 4	4
Figura 37 – Operação de recolha da amostra regional 2 4	4
Figura 38 – Condições de armazenagem das amostras até manipulação para envio para laboratório 4	
Figura 39 – Bancada de trabalho instalada na antecâmara de frio 4	6
Figura 40 – Corte de um liner de uma amostra congelada 4	6
Figura 41 – Preparação de amostra com TerraCore, colocação da amostra em metanol e acondicionamento do Vial para envio 4	
Figura 42 – Pesagem do vial com a amostra e com metanol, antes de proceder ao envio 4	8
Figura 43 – Descontaminação de utensílios com metanol 4	8
Figura 44 – Preparação do liner congelado para envio 4	9
Figura 45 – Preparação da amostra para determinação de pH, Eh e condutividade e frascos de acondicionamento 5	50
Figura 46 – Acondicionamento das amostras com acumuladores de frio, colocação das caixas com as amostras em sacos térmicos, conservação dos sacos térmicos na área de congelação e preparação final para envio aéreo5	i1

ÍNDICE DE QUADROS

Quadro 1 – Critérios para compostos orgânicos em solos	21
Quadro 2 – Critérios para metais em solos – legislações do Quebeque, do Ontário e da Holanda _	22
Quadro 3 – Critérios para metais em solos – objectivos de remediação ou níveis de rastreio da USEPA	23
Quadro 4 – Coordenadas das sondagens realizadas e uso do solo	30
Quadro 5 – Calendarização das operações de furação	30
Quadro 6 – Amostras recolhidas e acondicionadas para análise laboratorial (Sondagens 1, 2, 3, 4 e 5)	33
Quadro 7 – Amostras recolhidas e acondicionadas para análise laboratorial (Sondagens 6, 7 e 8)_	34
Quadro 8 – Resumo dos dados das análises <i>on site</i> - Metais	55
Quadro 9 – Resumo dos dados das análises laboratoriais - Metais	60
Quadro 10 – Amostras duplicadas – alguns parâmetros importantes	67

Análise e Parecer Sobre a Situação nas Áreas de Captação dos Furos de Abastecimento do Concelho de Praia da Vitória, Ilha Terceira – Açores

Relatório de Avaliação da Caracterização da Contaminação de Solos Junto a Potenciais Focos de Poluição

1. Introdução

No âmbito dos trabalhos desenvolvidos para o estudo da contaminação de solos, nas áreas de captação de águas para abastecimento público do Concelho de Praia da Vitória, Ilha Terceira – Açores, relacionada com as actividades desenvolvidas, durante décadas, na Base Aérea das Lajes e nas suas áreas anexas e contíguas, foi realizada prospecção geotécnica apropriada para colheita de amostras de solos para caracterização ambiental em laboratório. O*n site* foram caracterizadas expeditamente as condições relativas à presença de compostos orgânicos voláteis (VOCs) e de metais nos solos. Estas tarefas seguiram as Especificações Técnicas apresentadas em [1].

O presente estudo teve por suporte as investigações anteriores realizadas pelo U.S. Army Corps of Engineers (USACE); pela Air Force Center for the Engineering and the Environment (AFCEE), em conjunto com a CH2MHILL; pela Bhate Associates e pela AMEC – Earth & Environmental, para a U.S. Air Force in Europe (USAFE) e para o U.S. Air Force Combat Command (USAFCC), que constam dos seguintes relatórios:

- [2] Cleary, C.; D. Kachek, T. Liefer e R. Zruba (1997) Environmental Survey for 3 Sites.
 Lajes Field, Azores, Portugal, Final Report. USACE, April.
- [3] CH2MHILL (2004) Data Summary Report Groundwater Sampling at Lajes Field, Azores, Portugal. Contract F41624-03-D-8595, Task Order 184, October.
- [4] Bhate Associates (2008) Risk Assessment Summary of Findings for Sites 5001 (South Tank Farm), 3001 (Main Gate Area) and Data Gap Sampling at Lajes Field, Azores, Portugal.
- [5] AMEC (2009) Soil Investigation Near an Abandonened Communication Cable Lajes Field, Azores, Portugal. AMEC Earth & Environmental Project n.º 377120114, February.

De acordo com a consulta bibliográfica realizada, as principais acções potencialmente causadoras de contaminação dos solos na área de actuação da Base Aérea das Lajes (Lajes Field Property) estão relacionadas com diversas actividades e em especial com a armazenagem, transporte e distribuição (*pipelines*), trasfega e manuseamento de hidrocarbonetos, desde o momento que são extraídos dos barcos petroleiros até ao momento em que são sujeitos às operações de abastecimento de aeronaves ou de outros veículos. A área total que foi coberta por este tipo de operações é consideravelmente vasta, podendo corresponder a zonas mais ou menos alargadas (por exemplo, Cinder Pit Tank Farm), a pontos (por exemplo, BX Gas Station) ou a faixas (Pipelines do Cabrito e de Cinder Pit).

Assim, as áreas propostas para averiguação desenvolveram-se ao longo do antigo pipeline de abastecimento de combustível à Base Aérea e junto aos parques de armazenagem superficial e subterrânea [Areeiro – junto à Canada do Pico; junto ao depósito de terras/estaleiro da Câmara Municipal da Praia da Vitória (CMPV); junto à extremidade SE da pista; abaixo dos tanques enterrados de combustíveis de Pico Celeiro; no parque de campismo – junto ao South Tank Farm – área de armazenagem superficial estratégica; na Main Gate/Porta de Armas – antigo parque de armazenagem superficial; na Estrada 25 de Abril, onde o antigo pipeline a intersecta; e a S da Canada do Coxo], em locais seleccionados após trabalho de campo.

Os trabalhos realizados e as análises *on site* e laboratoriais para identificação da presença e quantificação de hidrocarbonetos, de solventes halogenados e de metais deveriam permitir a determinação de locais contaminados, que pudessem contribuir para pôr em causa a qualidade da

água dos aquíferos suspensos e, essencialmente, a do aquífero basal. No caso de existência de situações de contaminação, seria necessário definir eventuais soluções de remediação.

O presente relatório foi elaborado para a CMPV, no âmbito do Estudo "Análise e Parecer Sobre a Situação Ambiental nas Áreas de Captação dos Furos de Abastecimento do Concelho de Praia da Vitória - Açores", em desenvolvimento, em 2009 e 2010, nos Departamentos de Hidráulica e Ambiente e de Geotecnia do Laboratório Nacional de Engenharia Civil (LNEC).

Este relatório é constituído por sete Capítulos. O Capítulo 1 corresponde à presente Introdução. O Capítulo 2 compreende a uma descrição genérica do local da Base Aérea das Lajes e sua envolvente. O Capítulo 3 descreve as características geológicas do local. O Capítulo 4 faz referência aos critérios para orgânicos e metais a usar na avaliação da contaminação de solos. O Capítulo 5 aborda a avaliação das repercussões das actividades desenvolvidas na área em estudo. O Capítulo 6 mostra os resultados obtidos e respectiva interpretação. No Capítulo 7 tecem-se as conclusões.

O relatório contém, ainda, os seguintes quatro Anexos:

O Anexo 1 – com a planta de localização das 14 sondagens realizadas.

O Anexo 2 – com os *logs* das sondagens, respectivos piezómetros e registos fotográficos das caixas de sondagem.

O Anexo 3 – com os resultados dos ensaios expeditos realizados *on site* por MULTI-PID (detector de compostos orgânicos voláteis) e por Fluorescência de Raios X (FRX) para detecção de metais.

O Anexo 4 – com a descrição das actividades, com os requisitos para o controlo de qualidade, com as fichas de registo das amostras *on site*, com as fichas de recepção das amostras em laboratório, com o controlo de qualidade e com os resultados dos ensaios laboratoriais.

Neste estudo participaram elementos do Núcleo de Geologia de Engenharia e Geotecnia Ambiental (NGEA) do Departamento de Geotecnia (DG) do LNEC, sob coordenação da Investigadora Auxiliar Celeste Jorge, que definiram os pontos a amostrar, acompanharam a equipa de prospecção a todos os pontos onde se realizariam as sondagens, seguiram os trabalhos de prospecção e de recolha de amostras nos furos de sondagens nas áreas em que era mais provável existir contaminação e interagiram com as equipas de infra-estruturas do USACE do Comando Americano da USAF USAFE 65 MSG/CC, dirigido pelo Colonel Roderick E. Dorsey, Jr. A equipa americana realizou

diversos trabalhos, como a utilização de georadar, para detectar cabos e tubagens enterrados e evitar potenciais danos.

Na realização do presente relatório participou o Bolseiro Bruno Pina.

É ainda de referir a boa articulação e o espírito de equipa estabelecido entre as equipas da Mota--Engil, da Ambipar Control e do LNEC.

As práticas utilizadas pelas empresas contratadas cumpriram os requisitos das especificações técnicas apresentadas. Salienta-se o excepcional desempenho do Eng. José Morais (Ambipar Control) que agiu com cuidados redobrados nos procedimentos de extracção e na cadeia de custódia. Acrescenta-se, ainda, que muitas das fotografias e imagens deste relatório foram cedidas pelas empresas referidas.

Por último, faz-se um agradecimento:

- ao Comando Americano da 65th Air Base Wing, pela extraordinária ajuda prestada e pela cedência de documentos escritos (acima citados) e de plantas que auxiliaram muito os trabalhos desenvolvidos. Algumas dessas plantas fazem parte deste relatório.
- ao Comando da Zona Aérea dos Açores Base Aérea das Lajes, na pessoa do Major General Comandante Rui Mora Oliveira, pela logística disponibilizada e pelo livre acesso aos locais.

2. DESCRIÇÃO DO LOCAL

2.1 Localização e algumas características

A ilha Terceira faz parte do arquipélago do Açores, pertence ao grupo central e, como as restantes, é de origem vulcânica (Figura 1). A actividade vulcânica (latente) apresenta fases, intercaladas, de carácter explosivo (piroclastos) e de escoada (basaltos e traquitos), às quais se acrescentam formações vulcano-sedimentares e depósitos resultantes das soluções hidrotermais, o que se traduz, em parte, numa elevada complexidade geológica e consequente morfologia.

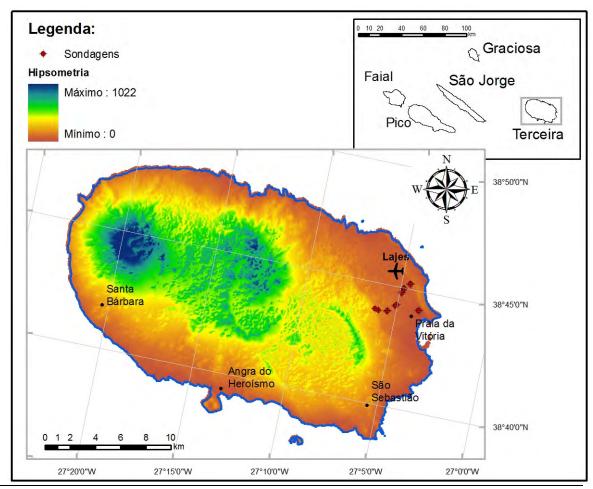


Figura 1 – Imagem da ilha Terceira e respectivo relevo, sua inserção no Grupo Central do Arquipélago do Açores.

A zona em estudo corresponde a um graben, onde surgem diversos aquíferos suspensos descontínuos e o aquífero basal (ligeiramente acima do nível do mar).

A área plana do graben é ocupada pela pista da Base Aérea e do Aeroporto das Lajes, pelas principais vias de comunicação da região, por aglomerados urbanos e, em grande parte, por terrenos agrícolas ou de pastagem, estendendo-se da caldeira das Lajes, a NW, à cidade de Praia da Vitória / zona industrial do porto, a SE.

A elevação que limita o graben a NE (serra de Santiago) é bastante íngreme e destaca-se na paisagem, enquanto a que limita o graben a SW é menos acentuada.

As linhas de água são quase inexistentes, no bloco abatido do graben, devido às características altamente permeáveis dos terrenos.

2.2 História do local

Foi reconhecido durante o século XIX, que "O arquipélago possuía um inestimável valor estratégico, (...) cuja utilização se tornou fundamental no decurso da fase final da segunda guerra mundial. Portugal acabou por ceder, primeiro à Inglaterra, depois aos Estados Unidos, direitos de utilização de bases navais no arquipélago. Os Americanos instalaram-se inicialmente em Santa Maria, através de um acordo assinado em 1944. (...)"[6].

Em 1957 foi assinado o acordo que previa a manutenção das tropas americanas nos Açores em tempo de paz, até finais de 1962. "A partir dessa altura, as tropas americanas permaneceram nos Açores, num regime transitório. (...)"[6]. Seria necessário chegar a 1971 para novo acordo ser assinado pelos governos português e americano.

Na ilha Terceira, a presença dos americanos fez-se sentir de forma muito acentuada na Base Aérea das Lajes. Esta base necessitou, em determinados períodos, de quantitativos de armazenagem estratégica de combustíveis bastante elevados, para dar resposta ao movimento de aeronaves militares. Com este objectivo, foram construídos e instalados depósitos superficiais e subterrâneos (Figuras 2 a 4) ligados à base pelo *pipeline* de Cinder Pit. Este *pipeline* atravessa a zona em estudo e é, por isso, apresentado nas Figuras 5 a 11.

Figura 2 – Localização de depósitos subterrâneos e superficiais junto ao Pico Celeiro, do Cinder Pit Tank Farm, no qual se armazenava o combustível que alimentava o *pipeline* com o mesmo nome.

Figura 3 – Depósitos subterrâneos existentes em Pico Celeiro.

Figura 4 – Bacia de retenção de um dos depósitos superficiais já desmantelado e aspecto do ramal do pipeline que ligava ao antigo depósito em Pico Celeiro.

Após a desactivação do *pipeline* de Cinder Pit, os combustíveis passaram a ser armazenados no South Tank Farm, que se localiza próximo da costa, junto ao porto americano, na área limítrofe da cidade de Praia da Vitória (Figura 12a). Estes combustíveis são posteriormente trasfegados para diversos depósitos que se encontram no interior da área da Base Aérea, como, por exemplo, os que são apresentados na Figura 12b e que vieram substituir uns antigos, que se localizavam num local contíguo.

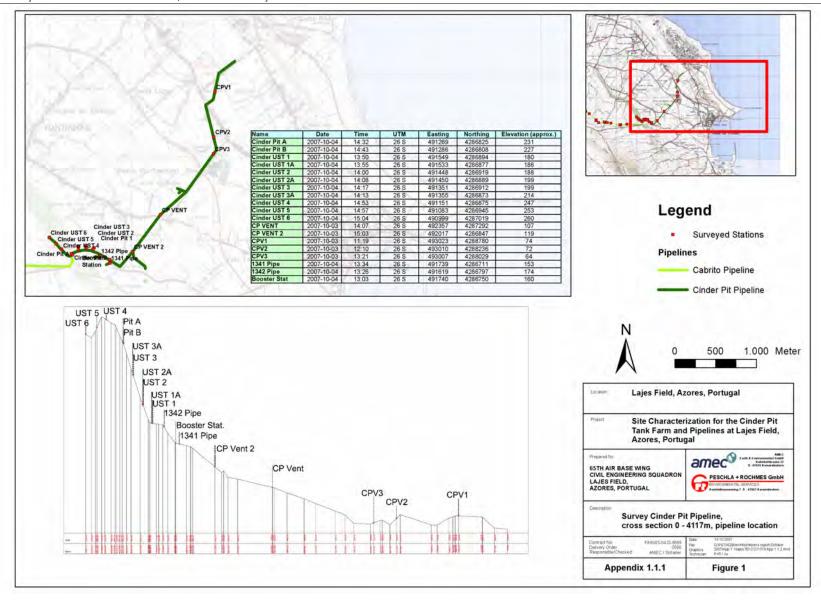


Figura 5 – Esquema geral do pipeline de Cinder Pit (imagem fornecida pela USAFCC).

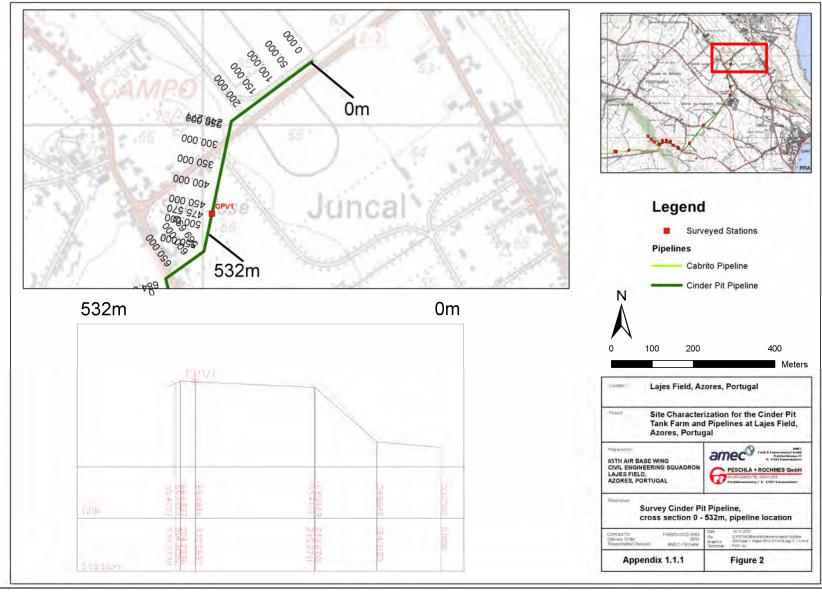


Figura 6 – Esquema do pipeline de Cinder Pit dos 0 aos 532 m (imagem fornecida pela USAFCC).

10

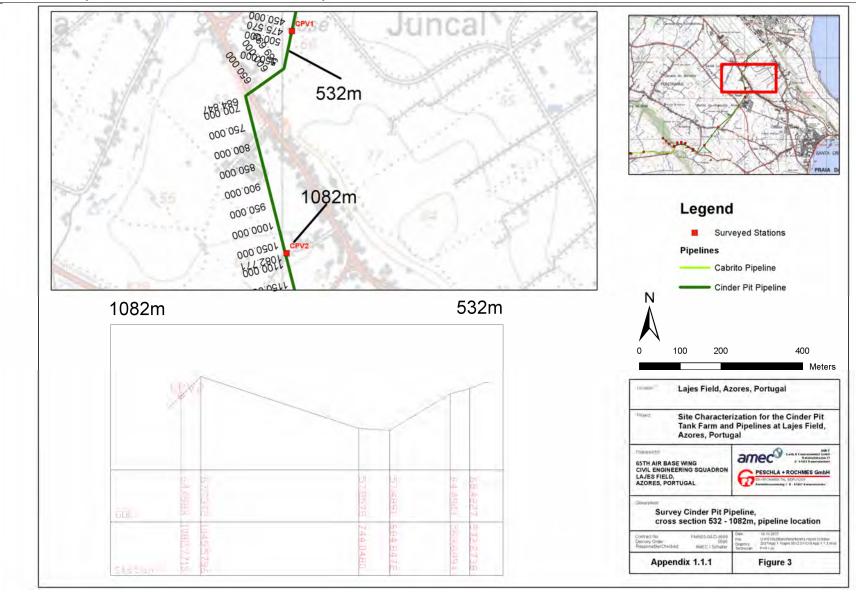


Figura 7 – Esquema do pipeline de Cinder Pit dos 532 aos 1082 m (imagem fornecida pela USAFCC).

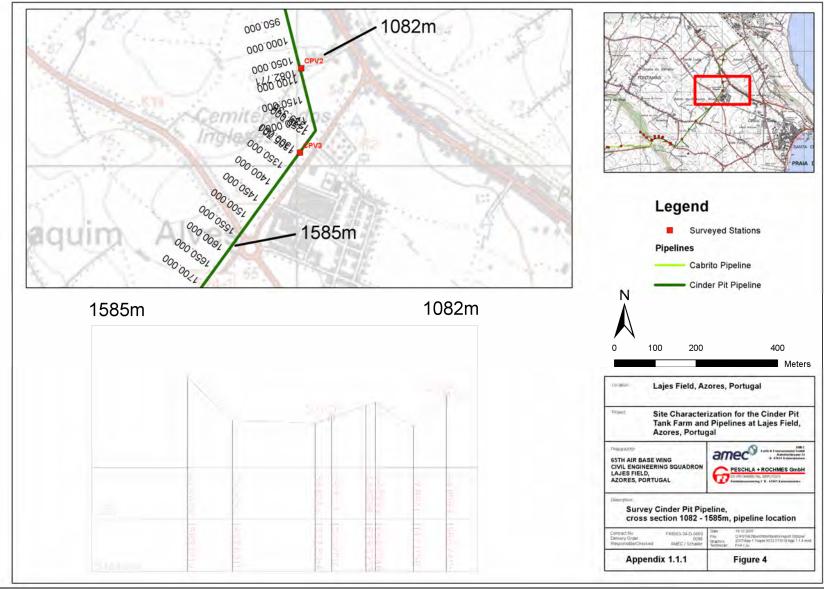


Figura 8 – Esquema do *pipeline* de Cinder Pit dos 1082 aos 1585 m (imagem fornecida pela USAFCC).

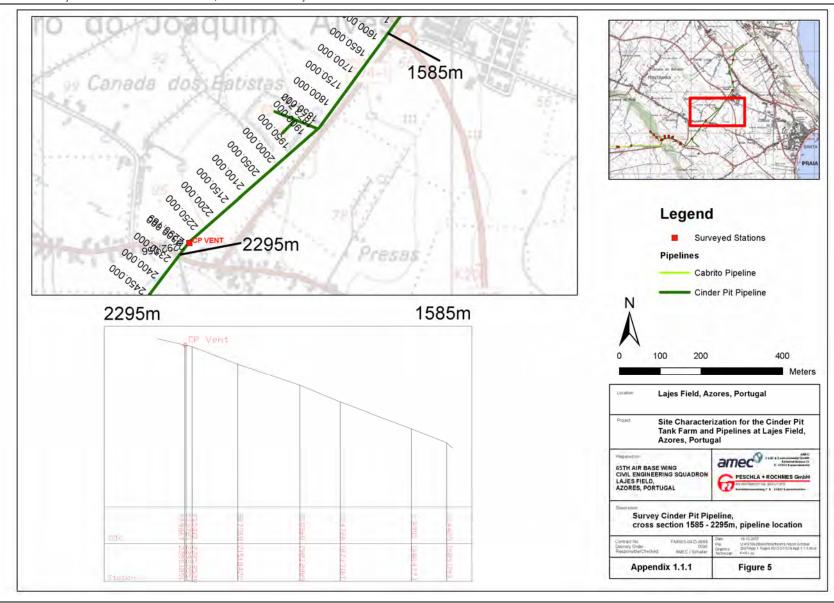


Figura 9 – Esquema do *pipeline* de Cinder Pit dos 1585 aos 2295 m (imagem fornecida pela USAFCC).

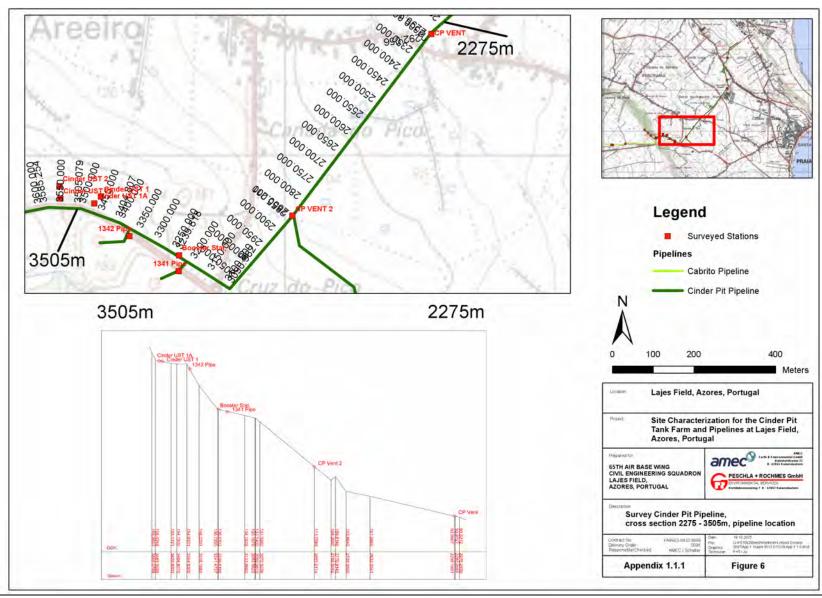


Figura 10 – Esquema do pipeline de Cinder Pit dos 2275 aos 3505 m (imagem fornecida pela USAFCC).

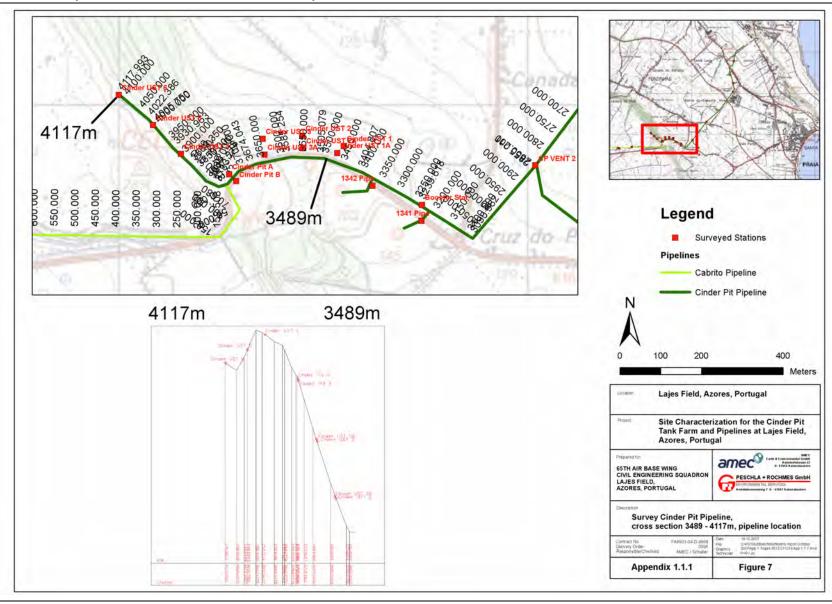


Figura 11 – Esquema do *pipeline* de Cinter Pit dos 3489 aos 4117 m (imagem fornecida pela USAFCC).

Figura 12 – a) Aspecto da South Tank Farm e b) vista dos depósitos existentes junto à Main Gate/Porta de Armas.

3. ENQUADRAMENTO GEOLÓGICO

O texto do enquadramento geológico é retirado, quase na íntegra, do relatório da Mota-Engil [7].

A área em estudo encontra-se cartografada em diferentes trabalhos, nomeadamente a Carta Vulcanológica da Ilha Terceira (1/200 000) [8] e a Carta Geológica da Terceira (1/25 000) [9]. Segundo a Carta Vulcanológica, a área em apreço situa-se num vale aplanado onde ocorrem as formações vulcânicas mais antigas da ilha, o qual resulta do abatimento do bloco entre duas falhas e é designado por Graben das Lajes (Figura 13).

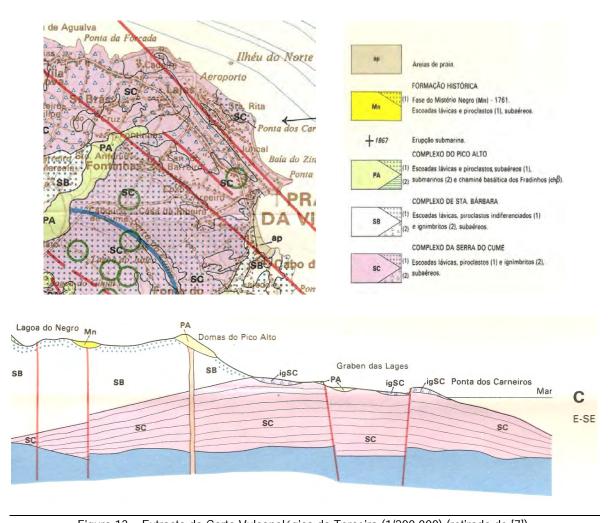


Figura 13 – Extracto da Carta Vulcanológica da Terceira (1/200 000) (retirado de [7]).

Segundo a Carta Geológica da Terceira, as formações ocorrentes na área em estudo são por ordem cronológica: dunas e areias de praia; Formação Basáltica Superior; Formação Ignimbrítica das Lajes; e Formação Traquibasáltica dos Cinco Picos (Figura 14). Estas duas últimas formações pertencem ao Complexo da Serra do Cume, definido na Carta Vulcanológica da Terceira (Figura 13).

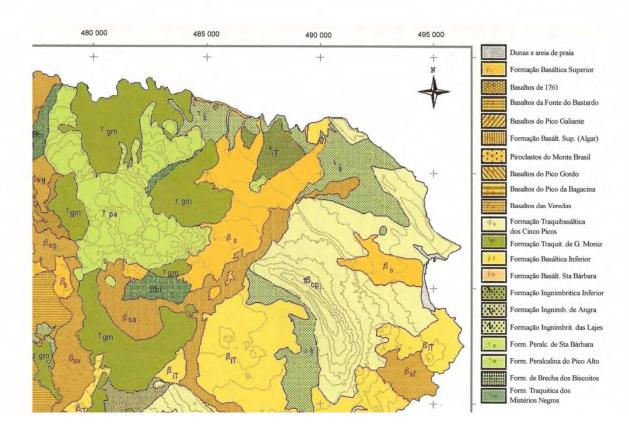


Figura 14 – Extracto da Carta Geológica da Terceira (1/25 000) (retirado de [7]).

4. CRITÉRIOS DE EXPOSIÇÃO/REMEDIAÇÃO

4.1 Generalidades

A armazenagem, a distribuição e a utilização de combustíveis na Base Aérea das Lajes são realizadas há mais de 50 anos. Durante este período, os combustíveis foram sofrendo algumas alterações na sua constituição, de acordo com a exigência imposta pelo tipo de tecnologia usada pelas diferentes aeronaves e por outro tipo de motores.

A AVGAS (aviation gasoline), cuja composição é semelhante à gasolina para veículos automóveis, era utilizada em aviões mais ligeiros e possuía tetraetil de chumbo. O JP-8 (Jet Propellant) é um fuel para aviões a jacto, à base de kerosene¹, e veio subtituir na totalidade a utilização do JP-4, na força aérea, a partir de 1996. Este foi introduzido nas bases da NATO em 1978 e está prevista a sua utilização até 2025. A aviação comercial utiliza uma mistura semelhante, designada por Jet-A.

O JP-8 pode ser utilizado como combustível em aparelhos de aquecimento, em fogões e em diversos veículos militares. É igualmente usado como líquido de refrigeração em motores. Apresenta um aspecto mais oleoso, é menos volátil do que os seus antecessores e permanece nas superfícies contaminadas por mais tempo, aumentando o risco de exposição [10].

A contaminação do meio subterrâneo, essencialmente por hidrocarbonetos, ocorre, numa primeira fase, ao nível dos solos (envolvendo as partículas e preenchendo os vazios) e depois, e, sempre que a capacidade de saturação destes é ultrapassada, faz-se em profundidade até atingir as águas subterrâneas. Durante estas duas fases e à medida que o processo de contaminação avança, a fracção gasosa liberta-se e as águas que percolam nestes solos vão dissolvendo as fracções solúveis dos compostos orgânicos presentes, arrastando-as. As restantes fracções são retidas nas partículas do solo e de matéria orgânica ou permanecem na fase pura.

Devido às características das diversas misturas combustíveis e, no passado, à adição de metais para lhes aumentar o poder energético, estes podem ocorrer. A origem dos metais pode ainda estar associada à presença de infra-estruturas metálicas, sob a acção da corrosão.

_

¹ Possui ainda inibidores de congelação, inibidores de corrosão, lubrificantes e agentes antiestáticos.

Desta forma, os contaminantes que são averiguados neste estudo são: compostos orgânicos da gasolina; compostos orgânicos do diesel; compostos orgânicos voláteis e semi-voláteis (halogenados ou não) e metais.

4.2 Orgânicos

Não existe uma legislação portuguesa sobre os solos e a sua protecção contra a contaminação. Por esse motivo, recorre-se a legislações bem aceites, como seja a Holandesa ou as Canadianas (Ontário e Quebeque). Recentemente, a Legislação Holandesa e a Legislação do Quebeque sofreram algumas alterações, as quais não serão aqui contempladas. No Quadro 1 são apresentados os critérios utilizados.

4.3 Metais

Para o presente estudo, foram considerados os limites máximos admissíveis de concentrações para diversos metais (como por exemplo, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb e Zn – de acordo com estudos anteriores) das legislações do Quebeque, de Ontário e da Holanda (Quadro 2), bem como os critérios publicados pela USEPA para solos (para objectivos de remediação e para níveis de rastreio) (Quadro 3). Os limites dos critérios da USEPA são apresentados, tendo em conta os futuros usos do solo e os factores de diluição e de atenuação.

Ouadro 1 – Critérios para compostos orgânicos em solos

Quadro 1 – Critérios para compostos organicos em solos						
	Legislação Holanda cd(mg/kg solo seco)		Legislação Ontário ^b (µg/g)		Legislação Quebeque ^a (mg/kg solo seco)	
Classe de compostos	Valor de referência	Valor de intervenção	Resid.	Indus.	Sensível	Menos sensível
BTEX						
Benzeno	0,01	1	0,24	0,24	0,5	5
Tolueno	0,03	50	2,1	2,1	1	10
Etilbenzeno	0,01	130	0,28	0,28	5	50
Xilenos	0,1	25	25	25	1	10
Hidrocarbonetos aromáticos						
policíclicos						
Acenaftano			15	15	10	100
Acenaftileno			100	100	10	100
Antraceno*			28	28	10	100
Benzo(a)antraceno*			6,6	6,6	1	10
Benzo(a)pireno*			1,2	1,9	1	10
Benzo(b)fluoranteno			12	18	1	10
Benzo(ghi)pirileno*			40	40	1	10
Benzo(k)fluoranteno*			12	18	1	10
Criseno*			12	17	1	10
Dibenzo(ah)antraceno			1,2	1,9	1	10
Fenantreno*			40	40		
Fluoranteno*			40	40		
Fluoreno			340	340	10	100
Indeno(1,2.3-cd)pireno*			12	19	10	100
Naftaleno*			4,6	4,6	1	10
Pireno			250	250	5	50
PAH (*sum 10)	1	40				
TPH	50	1000			700	3500
BPC (sum 7)	0,02	1	5	25	1	10
Tricloroeteno (TCE)	0,1	60	1,1 (3,9)	1,1(3,9)	2	50
Tetracloroeteno (PCE)	0,002	4	0,45	0,45	2	50
Fenóis	0,05	40	40	40	1	50

- a) Règlement sur la Protection et la Réhabiation des Terrains au Québec Loi sur la qualité de l'environment (L.R.Q., c.Q-2, a. 31, par. f, h, h.1, h.2, et m, a. 31.69, par. 1°, 2° et 3°, a. 109.1 et a. 124.1; 2002, c.11, a.2)².
- b) Ministry of Environment and Energy (1997) Guideline for Use at Contaminated Sites in Ontario. Table A Surface Soil in a Potable Groundwater Situation (pH is 5 to 9) ³.
- c) VRMO (2000) Circular on Target and Intervention Values for Soil Remediation. Ministrie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, February Environmental Policy, Lower House of Parliament, parliamentary proceedings 1988-1989, 21 137, no. 5.
- d) Standard soil: 10% organic matter and 25% clay.

LNEC - Proc. 0607/1/17171; Proc. Int. 0504/541/1279

² A Lei do Quebeque foi alterada em 2010, mas não se teve acesso à nova versão.

³ Foram considerados os limites para solos superficiais. Os limites para os restantes solos são muito menos conservativos.

Quadro 2 – Critérios para metais em solos – legislações do Quebeque, do Ontário e da Holanda⁴

Elemento	Valores (mg/kg de (Queb	solo seco)	Critério de remediação de solos ^b (µg/g) (Ontário)		Critério de contaminação de solos (mg/kg de solo seco) ^{c d} (Holanda)		
	Usos mais sensíveis	Usos menos sensíveis	Residen- cial/área de lazer	Industrial/Co- mercial	Valor de referência	Valor de interven- ção	Contami- nacão grave
Antimónio			13	40	3	15	
Arsénio	30	50	(25) 20	(50) 40	29	55	
Bário	500	2000	(1000) 750	(2000) 1500	160	625	
Cádmio	5	20	12	12	0,8	12	
Cobalto	50	300	(50) 40	(100) 80	9	240	
Cobre	100	500	(300) 225	(300) 225	36	190	
Crómio _{total}	250	800	(1000) 750	(1000) 750	100	380	
Crómio (VI)			(10) 8	(10) 8			
Chumbo	500	1000	200	1000	85	530	
Estanho	50	300					900
Manganês	1000	2200					
Mercúrio	2	10	10	10	0,3	10	
Molibdénio	10	40	40	40	3	200	
Níquel	100	500	(200) 150	(200) 150	35	210	
Prata	20	40	(25) 20	(50) 40			15
Selénio	3	10	10	10	0,7		100
Tálio			4,1	32	1		15
Vanádio			(250) 200	(250) 200	42		250
Zinco	500	1500	(800) 600	(800) 600	140	720	

a) Règlement sur la Protection et la Réhabiation des Terrains au Québec - Loi sur la qualité de l'environment (L.R.Q., c.Q-2, a. 31, par. f, h, h.1, h.2, et m, a. 31.69, par. 1°, 2° et 3°, a. 109.1 et a. 124.1; 2002, c.11, a.2)⁵.

b) Ministry of Environment and Energy (1997) – Guideline for Use at Contaminated Sites in Ontario. Table A – Surface Soil in a Potable Groundwater Situation (pH is 5 to 9) 6.

c) VRMO (2000) – Circular on Target and Intervention Values for Soil Remediation. Ministrie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, February – Environmental Policy, Lower House of Parliament, parliamentary proceedings 1988-1989, 21 137, nº. 5.

d) Standard soil: 10% organic matter and 25% clay.

⁽⁾ Critério aplicado a solos de textura média a fina.

⁴ Legislação de 2000.

⁵ A Lei do Quebeque foi alterada em 2010, mas não se teve acesso à nova versão.

⁶ Foram considerados os limites para solos superficiais. Os limites para os restantes solos são muito menos conservativos.

Quadro 3 – Critérios para metais em solos – objectivos de remediação ou níveis de rastreio da USEPA

Elemento	Objectivos de remediação preliminares ou níveis de rastreio no solo			
	Residencial (mg/kg)	Industrial (mg/kg)		
Antimónio	31	410		
Arsénio	0,39	1,6		
Bário	15000	190000		
Cádmio	70	800		
Chumbo	400	800		
Cobalto	23	300		
Cobre	3100	41000		
Crómio _{total}				
Crómiovi	0,29	5,6		
Estanho	47000	610000		
Ferro	55000	720000		
Prata	390	5100		
Manganês	1800	23000		
Níquel	1500	20000		
Selénio	390	5100		
Vanádio	5,5	720		
Zinco	23000	310000		
Tetraetil de chumbo ⁷	0,0061	0,062		

⁷ Composto organo-metálico.

5. AVALIAÇÃO DAS CONSEQUÊNCIAS DAS ACTIVIDADES DESENVOLVIDAS

5.1 Informação

A avaliação da contaminação de solos teve por base a campanha de prospecção mecânica e respectiva colheita de amostras ambientais, realizada pela Mota-Engil, sob coordenação do Eng. Nuno Pupo. O LNEC acompanhou as primeiras sondagens e supervisionou as práticas realizadas durante a amostragem e o acondicionamento das amostras até à sua entrega na FRIPRAIA8.

A empresa FRIPRAIA guardou as amostras até ao momento da sua preparação e posterior envio para laboratório em condições condicionadas.

As amostras foram preparadas pelo Eng. José Morais, da Ambipar Control, conforme se apresenta na Secção 5.4, e enviadas por transporte aéreo para o laboratório ALS Laboratory Group, na República Checa, com excepção das amostras de pH, condutividade eléctrica e potencial redox⁹. As amostras deram entrada no laboratório à temperatura de 0°C.

5.2 Amostragem ambiental

A recolha de solos decorreu nos locais antes referidos [Areeiro – junto à Canada do Pico; junto ao depósito de terras/estaleiro da Câmara Municipal da Praia da Vitória (CMPV); junto à extremidade SE da pista; abaixo dos tanques enterrados de combustíveis de Pico Celeiro; no parque de campismo – junto ao South Tank Farm – área de armazenagem superficial estratégica; na Main Gate/Porta de Armas – antigo parque de armazenagem superficial; na Estrada 25 de Abril, onde o antigo pipeline a intersecta; e a S da Canada do Coxo] e que são apresentados na Secção 5.3. Em cada local, foram realizadas duas sondagens, em vez das três inicialmente previstas, e por esse facto não poderá ser avaliada a volumetria de material/solo contaminado.

A avaliação da contaminação foi efectuada na horizontal, nos dois pontos referidos para cada local, e na vertical, a diferentes profundidades, utilizando como critério de avaliação os valores limites apresentados nos Quadros 1 a 3.

-

⁸ A FRIPRAIA cedeu um compartimento frigorífico com temperatura a –23°C.

⁹ Estas análises foram realizadas na Quimiteste, Engenharia e Tecnologia, SA.

A estratégia passou pela despistagem *on site*, logo após a colheita das amostras, da presença de VOCs (Multi Pid) e da presença de um conjunto de metais (por FRX directa), com procedimentos mais ou menos expeditos.

Na execução das sondagens mecânicas, foi utilizado um equipamento hidráulico de perfuração MUSTANG 4-F1, da ATLAS COPCO (Figura 15), equipado com motor Deutz F4L 912, que desenvolve uma potência de 49 kW às 2100 rpm. A unidade de rotação RH50 tem um binário máximo de 500 kgm e uma velocidade de rotação máxima de 714 rpm [7].

A circulação de água, para limpeza e descontaminação das ferramentas de amostragem (Figura 16) e furação, bem como para o arrefecimento das ferramentas de corte, fez-se com o auxílio de um grupo moto-bomba da alta pressão, DITER-FMC L09, apoiado por outro grupo moto-bomba Honda GK 200 [7].

Figura 15 – Equipamento de sondagem Mustang 4-F1.

Para a furação e a amostragem de solos, utilizou-se uma coluna de trados ocos TRI-LOKTM, com 108 mm de diâmetro interno e 194 mm de diâmetro externo, da Foremost Mobile, sem introdução de fluidos. A união entre as secções deste trado é realizada através de encaixe e profuso com "o-ring" LNEC - Proc. 0607/1/17171; Proc. Int. 0504/541/1279

incorporado, não necessitando de qualquer lubrificante ou óleo para funcionar correctamente e sendo estanque e, por isso, uma ferramenta frequentemente utilizada em trabalhos de índole ambiental [7].

Figura 16 – Operação de limpeza do trado e do amostrador.

Sempre que a profundidade pretendida era atingida, a coluna de varas internas era rapidamente removida, realizando-se pelo interior do trado diversas operações: recolha de amostras indeformadas em solos por "directpush", carotagem em rocha ou instalação de um piezómetro [7].

Para além da amostra remexida, que o trado trás à superfície pelo lado de fora durante a furação, foram colhidas amostras indeformadas com "liner" sistematicamente pelo seu interior, sempre que as características físicas dos solos o permitiram. O correcto manuseamento do trado oco, ajudou a prevenir o problema da contaminação cruzada entre as diferentes camadas atravessadas no mesmo furo, uma vez que o trado avançou sempre sem recuos, revestindo o furo, não permitindo que as sucessivas amostras recolhidas se misturassem (Figura 17) [7].

Para recolher amostras indeformadas de solos, utilizaram-se dois amostradores ambientais com liner interno, em PVC transparente. O Geoprobe Macrocore MC5, com 57 mm de diâmetro externo e 1 m de comprimento, e o DATC STS-75, com 75 mm de diâmetro e 0,75 m de comprimento. Este último amostrador foi utilizado apenas em solos mais grosseiros e/ou solos muito compactos [7].

A cravação dos amostradores ambientais foi realizada estaticamente, sempre que a resistência oferecida pelo solo o permitiu, ou por cravação dinâmica - "direct-push," em solos mais compactos. Quando foi necessário ultrapassar leitos de rocha vulcânica, a sondagem prosseguiu pelo interior do trado oco à rotação com amostragem contínua, utilizando-se, para o efeito, "carotadores" duplos do tipo T2 e T6, de 101 mm de diâmetro, equipados com coroas diamantadas de matriz variável. Uma vez ultrapassado o leito rochoso, os solos subjacentes foram amostrados também à rotação com os mesmos "carotadores" duplos, mas equipados com coroas de metal duro (widia) e a seco, ou seja, sem fluidos de arrefecimento e limpeza. Nos solos, sob os leitos rochosos, foram também recolhidas amostras, com recurso aos amostradores ambientais MC5 e STS75[7].

No final, depois de retirado o liner do interior do amostrador, foi colocada película plástica aderente a envolver os topos, que foram fechados com tampas de borracha. Para o tamponamento e selagem dos liners, foi colocada fita larga de teflon, bem apertada em torno do rebordo das tampas, e sobre este conjunto fita adesiva (Figuras 17 e 18). No final, sobre o liner foi colada etiqueta plástica com a identificação da amostra, que foi imediatamente colocada dentro de mala térmica fornecida pela empresa responsável pelo armazenamento e transporte das amostras para laboratório. [7].

Figura 17 – Amostrador e *liner* tamponado.

A fracção da amostra que ficou na cabeça do amostrador foi aproveitada para as análises *on site*, conforme mostram as Figuras 19 e 20.

Figura 18 – Preparação da amostra e amostra final pronta a acondicionar no frio.

Figura 19 – Cabeça do amostrador e aproveitamento do respectivo solo para ensaios on site.

Figura 20 – Realização das determinações *on site* por Multi-Pid e por FRX (imagens retiradas de [7]).

5.3 Locais de Amostragem

Os locais de amostragem são apresentados na planta do Anexo 1. No total realizaram-se 14 sondagens (Quadros 4 e 5), tendo sido recolhidas amostras para análises químicas laboratoriais (Quadros 6 e 7), de acordo com o procedimento referido na Secção 5.2, e amostras para descrição macroscópica.

As amostras recolhidas nos amostradores duplos T2 e T6 que não foram para análise laboratorial, foram objecto de cuidados particulares. Imediatamente após a extracção, e depois de

convenientemente limpas, foram colocadas em caixas apropriadas, identificadas por separadores de madeira onde, na secção superior, de modo legível e indelével, foi indicada a profundidade atingida pela sonda, nessa manobra. No final de cada sondagem, as amostras, com a respectiva identificação, foram fotografadas em cada uma das caixas, separadamente, com equipamento digital [7]. Os logs das sondagens e o registo fotográfico da amostragem são apresentados no Anexo 2.

Quadro 4 – Coordenadas das sondagens realizadas e uso do solo

				T
Sondagem	M	Р	Z	Uso dos solos
S1A	492132,803	4287048,734	99,011	Pastagem
S1B – PZ	492165,859	4287098,904	94,780	Pastagem
S2A	492686,452	4287594,143	77,734	Pastagem
S2B	492784,315	4287680,893	71,349	Depósito de terras
S3A	493074,105	4289002,991	58,410	Pastagem
S3B	493113,056	4288993,259	57,704	Pastagem/luzes da pista
S4	491489,365	4286995,111	149,725	Pastagem
S5A – PZ	494494,860	4287565,862	1,711	Parque de campismo/
35A - FZ	474474,000	4207303,002	1,711	Pastagem
S5B – PZ	494571,105	4287582,080	1,657	Parque de campismo/
35D - FZ	474371,103	4207302,000	1,057	Pastagem
S6A – PZ	493479,495	4289472,039	56,435	Relvado da Base
S6B – PZ	493511,980	4289400,206	54,306	Relavdo da Base
S7A	492972,095	4288645,099	62,477	Pastagem/Estrada
S7B	492928,674	4288647,062	57,938	Pastagem/Estrada
S8 -PZ	491199,699	4287049,936	161,846	Pastagem

Quadro 5 – Calendarização das operações de furação

Sondagem	Início	Término
S1A	08-03-2010	09-03-2010
S1B	09-03-2010	11-03-2010
S2A	06-03-2010	08-03-2010
S2B	05-03-2010	05-03-2010
S3A	27-02-2010	27-02-2010
S3B	25-02-2010	26-02-2010
S4	03-03-2010	04-03-2010
S5A	22-02-2010	22-02-2010
S5B	20-02-2010	20-02-2010
S6A	23-02-2010	23-02-2010
S6B	24-02-2010	24-02-2010
S7A	01-03-2010	02-03-2010
S7B	27-02-2010	01-03-2010
S8	12-03-2010	13-03-2010

A descrição macroscópica dos materiais amostrados e a cartografia citada, permite enquadrar os 8 locais estudados nas seguintes formações: dunas e areias de praia (Sondagens 5); Formação Basáltica Sup. (Sondagens 1, 2 e 4); Formação Traquibasáltica dos Cinco Picos (Sondagens 3, 6, 7 e 8). Em nenhuma das sondagens foram amostrados ignimbritos (...). De salientar que o local 6 (Sondagem 6) se situa sobre a falha da vertente nordeste do graben das Lajes, designada de falha de Santiago [7].

Em todos os furos foram medidos os níveis de água e, naqueles em que o mesmo foi intersectado, foram instalados piezómetros de tubo aberto, de configuração simples, em PEAD de 3" de diâmetro, montados em séries telescópicas com 1 e 3 m de comprimento, com tampas roscadas nos topos. Assim, o furo S1B tem um piezómetro, crepinado entre os 13 e os 18 m (água aos 14,3 m); o furo S5A tem um piezómetro, crepinado entre 1 e 6,3 m (NF aos 0,9 m), e o furo S5B tem um piezómetro, crepinado entre os 1,3 e os 5,3 m (NF a 0,7 m); o furo S6A tem um piezómetro, crepinado entre os 2,6 e os 8,6 m (NF aos 5,4 m), e o S6B tem um piezómetro, crepinado entre os 2 e os 7 m (água aos 3,1 m); e o furo S8 tem um piezómetro, crepinado entre os 3 e os 6 m, encontrando-se seco à data da observação pela Mota-Engil.

De seguida, apresentam-se as fotos dos locais onde se realizaram as sondagens referidas.

5.3.1 Sondagens S1A e S1B

As fotos relativas ao local das sondagens S1A e S1B são apresentadas nas Figuras 21 e 22.

Figura 21 – Aspecto das condições do local onde se realizaram as sondagens S1A e S1B.

Figura 22 – Aspecto geral da área onde se realizaram as sondagens S1A e S1B.

Quadro 6 – Amostras recolhidas e acondicionadas para análise laboratorial (Sondagens 1, 2, 3, 4 e 5)

	Tipo de Amostra	Profundidade (m)	Recuperação (cm)
S1A	2 sacas de ZIP	15,00-16,00	
	MC5	0,70-1,70	100
S1B	1 saca de ZIP	15,40-15,80	
SID	2 sacas de ZIP	15,80-16,20	
	MC5	16,20-17,00	65
S2A	MC5	5,80-6,80	80
SZA	MC5	7,90-8,90	80
	STS 75	1,00-1,50	40
S2B	STS 75	4,20-5,20	55
SZB	STS 75	6,40-7,40	60
	STS 75	8,40-9,40	40
S3A	MC5	1,00-2,00	80
SSA	MC5	2,50-3,50	80
	MC5	1,00-2,00	80
	MC5	2,50-3,50	80
S3B	MC5	4,00-5,00	85
	MC5	5,50-6,50	85
	MC5	7,00-8,00	60
	MC5	1,00-2,00	50
	MC5	2,50-3,50	50
	STS 75	4,00-5,00	60
	STS 75	5,50-6,50	65
	STS 75	7,00-8,00	45
S4	STS 75	8,50-9,50	70
34	STS 75	10,00-11,00	70
	STS 75	11,50-12,50	65
	STS 75	13,00-14,00	65
	STS 75	14,50-15,50	65
	STS 75	16,00-17,00	65
	STS 75	17,50-18,00	40 - (amostra com basalto)
	MC5	0,50-1,50	70
S5A	MC5	2,00-3,00	100
SOA	MC5	4,00-5,00	40
	MC5	5,50-6,00	2 - (amostra de basalto)
	MC5	0,50-1,50	60
S5B	MC5	2,50-3,50	75
	MC5	4,00-5,00	40

Sacas – sacos com Zip (Figura 19). MC5 – Amostrador da Geoprobe Macrocore (57 mm de diâmetro externo e 1 m de comprimento), com *liner* interno. STS 75 – Amostrador DATC STS-75 (75 mm de diâmetro e 0,75 m de comprimento), com *liner* interno.

Quadro 7 – Amostras recolhidas e acondicionadas para análise laboratorial (Sondagens 6, 7 e 8)

		<u> </u>	<u> </u>
Sondagem	Tipo de Amostra	Profundidade (m)	Recuperação (cm)
	MC5	1,10-2,00	90
	MC5	2,50-3,50	90
	MC5	4,00-5,00	90
S6A	MC5	5,50-6,50	90
	MC5	7,00-8,00	60
	MC5	8,50-9,50	90
	MC5	10,00-11,00	90
	MC5	1,00-2,00	85
S6B	MC5	2,50-3,50	80
300	SPT	5,40-5,80	25
	MC5	7,00-8,00	100
	MC5	1,00-2,00	70
	MC5	2,50-3,50	100
S7A	MC5	4,00-5,00	50
	MC5	5,50-6,50	75
	MC5	7,00-7,80	80
	MC5	1,00-1,70	50
	MC5	2,50-3,50	80
	MC5	4,00-5,00	80
S7B	MC5	5,50-6,50	100
	MC5	7,00-8,00	100
	MC5	8,50-9,50	60
	MC5	10,00-10,80	40
	STS 75	1,50-2,25	75
[STS 75	2,80-3,50	75
[MC5	4,30-5,30	38
S8	MC5	6,10-7,10	100
[MC5	7,40-8,40	100
[MC5	8,90-9,90	100
	MC5	10,50-11,50	100

Sacas – sacos com Zip (Figura 19).

MC5 – Amostrador da Geoprobe Macrocore (57 mm de diâmetro externo e 1 m de comprimento), com *liner* interno. STS 75 – Amostrador DATC STS-75 (75 mm de diâmetro e 0,75 m de comprimento), com *liner* interno.

5.3.2 Sondagens S2A e S2B

As fotos relativas ao local das sondagens S2A e S2B são apresentadas na Figura 23.

Figura 23 – Aspecto das condições dos locais onde se realizaram as sondagens S2A e S2B.

5.3.3 Sondagens S3A e S3B

As fotos relativas aos locais das sondagens S3A e S3B são apresentadas nas Figuras 24 e 25.

Figura 24 – Aspecto geral da área onde se realizaram as sondagens S3A e S3B.

Figura 25 – Aspecto das condições dos locais onde se realizaram as sondagens S3A e S3B

5.3.4 Sondagens S4A e S4B

As fotos relativas ao local da sondagem S4 são apresentadas na Figura 26.

Figura 26 – Aspecto das condições do local onde se realizou a sondagem S4.

5.3.5 Sondagens S5A e S5B

As fotos relativas aos locais das sondagens S5A e S5B são apresentadas nas Figuras 27 e 28.

Figura 27 – Aspecto geral da área onde se realizaram as sondagens S5A e S5B.

5.3.6 Sondagens S6A e S6B

As fotos respeitantes aos locais das sondagens S6A e S6B são apresentadas nas Figuras 29 e 30.

5.3.7 Sondagens S7A e S7B

As fotos referentes aos locais das sondagens S7A e S7B são apresentadas nas Figuras 31 e 32.

5.3.8 Sondagens S7A e S7B

As fotos referentes ao local da sondagem S8 são apresentadas nas Figuras 33 e 34.

Figura 28 – Aspecto das condições dos locais onde se realizaram as sondagens S5A e S5B.

Figura 29 – Aspecto geral da área onde se realizaram as sondagens S6A e S6B. Marcação da sondagem S6B.

Figura 30 – Realização da sondagem S6A.

Figura 31 – Aspecto geral da área onde se realizaram as sondagens S7A e S7B.

Figura 32 – Realização da sondagem S7B.

Figura 33 – Realização da sondagem S8.

Figura 34 – Aspecto do sistema de tamponamento do piezómetro instalado na sondagem S8.

5.4 Amostras Regionais

Foram recolhidas duas amostras regionais discretas nos pontos assinalados na Figura 35. Estas amostras foram recolhidas em locais com ocupação natural (coberto vegetal autóctone), conforme se observa na Figura 36. A recolha foi realizada um pouco abaixo da superfície, para evitar possível contaminação superficial (Figura 37).

Com estas amostras pretende-se, de um modo geral, caracterizar o fundo regional, constituindo a situação de referência de avaliação de uma potencial contaminação. Desta forma, dever-se-á conseguir distinguir as características das formações geológicas originais, das especificidades introduzidas por algum processo antropogénico.

Figura 35 – Localização das amostras regionais.

Estas amostras foram acondicionadas com iguais procedimentos aos das amostras ambientais de solos e sujeitas à determinação dos mesmos parâmetros analíticos.

Figura 36 – Coberto vegetal do local de colheita da amostra regional 2.

Figura 37 – Operação de recolha da amostra regional 2.

5.5 Preparação das amostras

As amostras ambientais, depois de recolhidas, foram imediatamente condicionadas em situação de refrigeração, a uma temperatura inferior a 5°C, no escuro. De 4 em 4 horas, foram transportadas e armazenadas a –23/–20°C (Figura 38). Posteriormente, sofreram tratamento, de acordo com o estipulado nas especificações técnicas [1] ou, em condições extraordinárias, acordado directamente com a responsável pela colheita ambiental de solos. A preparação e envio das amostras para o laboratório ficou a cargo da AmbiPar Control [11].

Figura 38 – Condições de armazenagem das amostras até manipulação para envio para laboratório.

No dia 5 de Abril iniciou-se a preparação das amostras para posterior envio a Laboratório. As técnicas utilizadas seguiram as recomendações EPA 5035.

Na amostragem de VOCs, a amostra foi obtida através de TerraCore e preservada com metanol em *Vial.* Para os restantes ensaios optou-se pelo envio de secções congeladas das carotes nos próprios *liners*. A preparação das amostras ficou concluída durante a manhã do dia 7 de Abril.

As Figuras 39 à 46 pretendem mostrar as operações¹⁰ de preparação das amostras.

Acrescenta-se que a cadeia de custódia foi rigorosamente cumprida, conforme referido em 5.1.

_

¹⁰ Fotos fornecidas pela Ambipar Control.

Figura 39 – Bancada de trabalho instalada na antecâmara de frio.

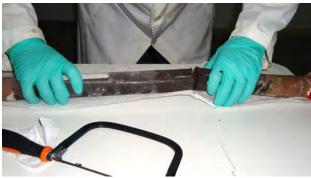


Figura 40 – Corte de um *liner* de uma amostra congelada.

Figura 41 – Preparação de amostra com TerraCore, colocação da amostra em metanol e acondicionamento do *Vial* para envio.

Figura 42 – Pesagem do *vial* com a amostra e com metanol, antes de proceder ao envio.

Figura 43 – Descontaminação de utensílios com metanol.

Figura 44 – Preparação do *liner* congelado para envio.

Figura 45 – Preparação da amostra para determinação de pH, Eh e condutividade e frascos de acondicionamento.

Figura 46 – Acondicionamento das amostras com acumuladores de frio, colocação das caixas com as amostras em sacos térmicos, conservação dos sacos térmicos na área de congelação e preparação final para envio aéreo.

5.6 Controlo de Qualidade

Para controlo de qualidade externo ao laboratório, foram realizadas 3 duplicações de amostras (S2A 7,9-8,9 m; S3B 4,0-5,0 m; e S7B 2,5-3,5 m), colhidas duas amostras regionais e foi analisada uma amostra designada por branco de amostragem (5 mL de metanol).

5.7 Determinações analíticas

Foram realizados ensaios *on site*, por Multi-Pid e por FRX, em todas as amostras recolhidas em todas as sondagens. Por vezes, realizaram-se ensaios *on site* sobre material trazido à superfície pelo trado. Os ensaios realizados *on site* por FRX foram repetidos em laboratório, pelo mesmo processo, devido ao elevado teor em água de algumas amostras. No total foram registadas 111 análises por FRX. Os resultados destes ensaios são apresentados no Anexo 3¹¹.

Os dados referentes às análises de laboratório são apresentados no Anexo 4. Neste anexo é feita referência às condições de preparação das amostras de solos e à preparação das amostras para replicados (duplicação), é apresentada uma folha de registo com as condições de todas as amostras e respectivos códigos, com as condições climatéricas ocorridas durante a colheita e o tipo de ocupação de solo em cada local, e, ainda, com o número e referência das amostras, assim como os parâmetros a analisar. Neste anexo consta ainda a notificação de recepção das amostras do ALS Laboratory Group, o relatório de controlo de qualidade interno e o certificado de análises.

No total foram testadas 45 amostras em laboratório – 1 branco de amostragem (metanol), 39 amostras de solo, 3 duplicados de solo e duas amostras regionais (Branco de amostragem; S1A 15,0 -16,0 m; S1B 1,0 - 2,0 m; S1B 15,4 - 17 m; S2A 5,8 - 6,8 m; S2A 7,9 - 8,9 m; S2B 4,2 - 5,2 m; S2B 6,4 -7,4 m; S2B 8,4 - 9,4 m; S3A 1,0 - 2,0 m; S3A 2,5 - 3,5 m; S3B 2,5 - 3,5 m; S3B 4,0 - 5,0 m; S3B 7,0 - 8,0 m; S4 5,5 - 6,5 m; S4 11,5-12,5 m; S4 16,0 - 17,0 m; S5A 0,5 - 1,5 m; S5A 2,0 - 3,0 m; S5A 5,5 - 6,0 m; S5B 0,5 - 1,5 m; S5B 2,5 - 3,5 m; S5B 4,0 - 5,0 m; S6A 1,1 - 2,0 m; S6A 2,5 - 3,5 m; S6A 4, 0 - 5,0 m; S6A 5,5 - 6,5 m; S6B 1,0 - 2,0 m; S6B 2,5 - 3,5 m; S6B 7,0, - 8,0 m; S6B 10,0 - 11,0 m; S7A 4,0 - 5,0 m; S7A 5,5 - 6,5 m; S7A 7,0 - 8,0 m; S7B 2,5 - 3,5 m; S7B 5,5 - 6,5 m; S7B 8,5 - 9,5 m; S8 4,5 - 5,4 m; S8 6,0 - 7,0 m; S8 9,0 - 10,0 m; S2A 7,9 - 8,9 m Duplicado; S3B 4,0 - 5,0 m Duplicado; S7B 2,5 - 3,5 m Duplicado; Amostra regional 1 e Amostra regional 2).

¹¹ No Anexo 3, as amostras S5A e S5B parecem não estar bem referidas quanto aos ensaios *on site*.

A amostragem foi pontual e cada amostra foi sujeita à análise dos seguintes parâmetros: metais; compostos orgânicos voláteis, hidrocarbonetos aromáticos policíclicos, hidrocarbonetos totais de petróleo, bifenilos policlorados, fenóis, pH, potencial redox, condutividade eléctrica, sulfatos, nitratos, matéria orgânica e resíduo seco.

Metais: Antimónio, Arsénio, Bário, Berílio, Cádmio, Crómio, Cobalto, Cobre, Ferro, Chumbo, Lítio, Manganês, Mercúrio, Molibdénio, Níquel, Fósforo, Prata, Estrôncio, Tálio, Estanho, Vanádio e Zinco.

Hidrocarbonetos halogenados alifáticos: Clorometano, Bromometano, Diclorometano, Dibromometano, Bromoclorometano, Triclorometano, Tribromometano, Bromodiclorometano, Tetraclorometano, Triclorofluormetano, Diclorofluormetano, Cloroetano, 1,1-dicloroetano, 1,2-dicloroetano, 1,2-dibromometano, 1,1,1-tricloroetano, 1,1,2-tricloroetano, 1,1,1,2-tetracloroetano, 1,1,2-tetracloroetano, 1,2-dicloropropano, 1,3-dicloropropano, 2,2-dicloropropano, cloreto de vinilo, 1,1-dicloroeteno, cis-1,2-dicloroeteno, trans-1,2-dicloroeteno, Tricloroeteno, Tetracloroeteno, 1,1-dicloro-1-propeno, cis-1,3-dicloro-1-propeno, 1,2,3-tricloropropano, 1,2-dibromo-3-cloropropano e Hexaclorobutadieno.

Hidrocarbonetos aromáticos halogenados: 2-clorotolueno, 4-clorotolueno, Clorobenzeno, Bromobenzeno, 1,2-diclorobenzeno, 1,3-diclorobenzeno, 1,4-diclorobenzeno, 1,2,3-triclorobenzeno, 1,2,4-triclorobenzeno e 1,3,5-triclorobenzeno.

Hidrocarbonetos aromáticos não halogenados: Benzeno, Tolueno, Estireno, m a p-xileno, o-xileno, Etilbenzeno, Isopropilbenzeno, n-propilbenzeno, 1,3,5-trimetilbenzeno, 1,2,4-trimetilbenzeno, n-butilbenzeno, sec-butilbenzeno, tert-butilbenzeno, p-isopropiltolueno e Naftaleno.

Hidrocarbonetos aromáticos policiclícos: Naftaleno, Acenafetileno, Acenafeteno, Fluoreno, Fenatreno, Antraceno, Fluoranteno, Denzo(a)antraceno, Criseno, bezo(b)fluoranteno, benzo(k)fluoranteno, benzo(a)pireno, dibenzo(ah)antraceno, benzo(ghi)perileno e indeno(123cd)pireno.

Bifenilos policlorados: PCB 28, PCB 52, PCB 101, PCB 118, PCB 138, PCB 180 e PCB 153.

6. RESULTADOS OBTIDOS E RESPECTIVA INTERPRETAÇÃO

6.1 Resultados obtidos

6.1.1 Análises on site

As análises *on site* foram realizadas por um Eng. Químico da empresa LQA, Ambiente, Lda., e os respectivos resultados são apresentados no Anexo 3.

Relativamente à detecção de VOCs pelo Multi-Pid, a sua presença foi registada apenas no material da sondagem S5A/S5B, com valor máximo de 10,5 ppm de isobutileno (2 m de profundidade). Nas restantes amostras, a concentração de VOCs foi assumida como sendo inferior a 0,1 ppm. Convém referir que a pressão atmosférica era elevada ao nível do solo, o teor em água das amostras (S5A/S5B) era elevado e a temperatura atmosférica não ultrapassou os 18°C.

Quanto aos metais, é apresentado um resumo dos resultados no Quadro 8, mostrando-se os valores mais elevados para cada sondagem e a(s) respectiva(s) profundidade(s).

6.1.2 Análises laboratoriais

Os métodos analíticos usados nos ensaios de laboratório são apresentados na notificação de recepção das amostras emitida pelo ALS, em 12 de Abril de 2010 (Anexo 4).

Para as diferentes amostras, são apresentados os elementos cujas concentrações ultrapassam os limites correspondentes às diferentes legislações utilizadas ou a critérios USEPA (Quadro 9 e Anexo 4).

Quadro 8 – Resumo dos dados das análises on site - Metais

Metais Sondagens	Mo (ppm)	Prof. (m)	Zr (ppm)	Prof. (m)	Sr (ppm)	Prof. (m)	U (ppm)	Prof. (m)	Rb (ppm)	Prof. (m)	Th (ppm)	Prof. (m)	Pb (ppm)	Prof. (m)
S1A	<lq (36<sup="">d)</lq>	15	1957	15	343	0-1	<lq (51)<="" th=""><th>15</th><th>43</th><th>15</th><th>34</th><th>15 e 17</th><th><lq (39)<="" th=""><th>15</th></lq></th></lq>	15	43	15	34	15 e 17	<lq (39)<="" th=""><th>15</th></lq>	15
S1B	<lq (31<sup="">d)</lq>	1,7	1034	1,7	172	1,7	<lq (49)<="" th=""><th>1,7</th><th>21</th><th>1,7</th><th><lq (27)<="" th=""><th>1,7</th><th><lq (39)<="" th=""><th>1,7</th></lq></th></lq></th></lq>	1,7	21	1,7	<lq (27)<="" th=""><th>1,7</th><th><lq (39)<="" th=""><th>1,7</th></lq></th></lq>	1,7	<lq (39)<="" th=""><th>1,7</th></lq>	1,7
S2A	<lq (29d)<="" th=""><th>6,8</th><th>1392</th><th>6,8</th><th>69</th><th>6,8</th><th><lq (50)<="" th=""><th>8,9</th><th>62</th><th>8,9</th><th><lq (24)<="" th=""><th>6,8 e 8,9</th><th><lq (33)<="" th=""><th>6,8</th></lq></th></lq></th></lq></th></lq>	6,8	1392	6,8	69	6,8	<lq (50)<="" th=""><th>8,9</th><th>62</th><th>8,9</th><th><lq (24)<="" th=""><th>6,8 e 8,9</th><th><lq (33)<="" th=""><th>6,8</th></lq></th></lq></th></lq>	8,9	62	8,9	<lq (24)<="" th=""><th>6,8 e 8,9</th><th><lq (33)<="" th=""><th>6,8</th></lq></th></lq>	6,8 e 8,9	<lq (33)<="" th=""><th>6,8</th></lq>	6,8
S2B	<lq (28<sup="">d)</lq>	7,4	1376	7,4	542	1,5	<lq (48)<="" th=""><th>9,4</th><th>39</th><th>9,4</th><th><lq (38)<="" th=""><th>1,5</th><th><lq (40)<="" th=""><th>1,5</th></lq></th></lq></th></lq>	9,4	39	9,4	<lq (38)<="" th=""><th>1,5</th><th><lq (40)<="" th=""><th>1,5</th></lq></th></lq>	1,5	<lq (40)<="" th=""><th>1,5</th></lq>	1,5
S3A	<lq (30<sup="">d)</lq>	2	1530	1	172	3,5	<lq (49)<="" th=""><th>1</th><th>48</th><th>1</th><th><lq (32)<="" th=""><th>2</th><th><lq (43)<="" th=""><th>1</th></lq></th></lq></th></lq>	1	48	1	<lq (32)<="" th=""><th>2</th><th><lq (43)<="" th=""><th>1</th></lq></th></lq>	2	<lq (43)<="" th=""><th>1</th></lq>	1
S3B	<lq (36d)<="" th=""><th>1</th><th>2130</th><th>1</th><th>325</th><th>8,2</th><th><lq (49)<="" th=""><th>5</th><th>48</th><th>5</th><th>36</th><th>1</th><th><lq (39)<="" th=""><th>8,2</th></lq></th></lq></th></lq>	1	2130	1	325	8,2	<lq (49)<="" th=""><th>5</th><th>48</th><th>5</th><th>36</th><th>1</th><th><lq (39)<="" th=""><th>8,2</th></lq></th></lq>	5	48	5	36	1	<lq (39)<="" th=""><th>8,2</th></lq>	8,2
S4	<lq (25<sup="">d)</lq>	1;11;12,5; 14;17 e 19	467	1	578	5	<lq (51)<="" th=""><th>12,5</th><th>28</th><th>16,5</th><th><lq (36)<="" th=""><th>17</th><th><lq (42)<="" th=""><th>17 e 19</th></lq></th></lq></th></lq>	12,5	28	16,5	<lq (36)<="" th=""><th>17</th><th><lq (42)<="" th=""><th>17 e 19</th></lq></th></lq>	17	<lq (42)<="" th=""><th>17 e 19</th></lq>	17 e 19
S5A	<lq (30<sup="">d)</lq>	5,5	1679	4-5	292	0,5-1,5	<lq (54)<="" th=""><th>2</th><th>59</th><th>5,5</th><th><lq (32)<="" th=""><th>2</th><th><lq (37)<="" th=""><th>2</th></lq></th></lq></th></lq>	2	59	5,5	<lq (32)<="" th=""><th>2</th><th><lq (37)<="" th=""><th>2</th></lq></th></lq>	2	<lq (37)<="" th=""><th>2</th></lq>	2
S5B	<lq (26<sup="">d)</lq>	2,5-3,5	921	0,5-0,95	291	2,5-3,5	<lq (44)<="" th=""><th>2,5-3,5</th><th>27</th><th>0,5-0,95</th><th><lq (30)<="" th=""><th>2,5-3,5</th><th><lq (39)<="" th=""><th>2,5-3,5</th></lq></th></lq></th></lq>	2,5-3,5	27	0,5-0,95	<lq (30)<="" th=""><th>2,5-3,5</th><th><lq (39)<="" th=""><th>2,5-3,5</th></lq></th></lq>	2,5-3,5	<lq (39)<="" th=""><th>2,5-3,5</th></lq>	2,5-3,5
S6A	<lq (33<sup="">d)</lq>	5	2173	9,5	206	5	<lq (49)<="" th=""><th>1 e 2</th><th>94</th><th>3,5</th><th>40</th><th>5</th><th><lq (36)<="" th=""><th>2</th></lq></th></lq>	1 e 2	94	3,5	40	5	<lq (36)<="" th=""><th>2</th></lq>	2
S6B	<lq (32d)<="" th=""><th>8</th><th>1884</th><th>8</th><th>160</th><th>1</th><th><lq (49)<="" th=""><th>1</th><th>134</th><th>6,2</th><th>33</th><th>8</th><th><lq (37)<="" th=""><th>6,2</th></lq></th></lq></th></lq>	8	1884	8	160	1	<lq (49)<="" th=""><th>1</th><th>134</th><th>6,2</th><th>33</th><th>8</th><th><lq (37)<="" th=""><th>6,2</th></lq></th></lq>	1	134	6,2	33	8	<lq (37)<="" th=""><th>6,2</th></lq>	6,2
S7A	<lq (32d)<="" th=""><th>3,5</th><th>1860</th><th>2</th><th>201</th><th>8</th><th><lq (47)<="" th=""><th>3,5</th><th>64</th><th>3,5</th><th>36</th><th>2</th><th><lq (39)<="" th=""><th>8</th></lq></th></lq></th></lq>	3,5	1860	2	201	8	<lq (47)<="" th=""><th>3,5</th><th>64</th><th>3,5</th><th>36</th><th>2</th><th><lq (39)<="" th=""><th>8</th></lq></th></lq>	3,5	64	3,5	36	2	<lq (39)<="" th=""><th>8</th></lq>	8
S7B	<lq (33d)<="" th=""><th>3,5</th><th>2166</th><th>3,5</th><th>125</th><th>6,5</th><th><lq (53)<="" th=""><th>1</th><th>79</th><th>1</th><th>39</th><th>3,5</th><th>132</th><th>1</th></lq></th></lq>	3,5	2166	3,5	125	6,5	<lq (53)<="" th=""><th>1</th><th>79</th><th>1</th><th>39</th><th>3,5</th><th>132</th><th>1</th></lq>	1	79	1	39	3,5	132	1
S8	<lq (39d)<="" th=""><th>11,5</th><th>2825</th><th>11,5</th><th>457</th><th>5,3</th><th><lq (52)<="" th=""><th>0-1,3</th><th>56</th><th>0-1,3</th><th>46</th><th>11,5</th><th><lq (36)<="" th=""><th>12-12,3</th></lq></th></lq></th></lq>	11,5	2825	11,5	457	5,3	<lq (52)<="" th=""><th>0-1,3</th><th>56</th><th>0-1,3</th><th>46</th><th>11,5</th><th><lq (36)<="" th=""><th>12-12,3</th></lq></th></lq>	0-1,3	56	0-1,3	46	11,5	<lq (36)<="" th=""><th>12-12,3</th></lq>	12-12,3

Quadro 8 – Resumo dos dados das análises on site – Metais (continuação)

Metais Sondagens	Se (ppm)	Prof. (m)	As (ppm)	Prof. (m)	Hg (ppm)	Prof. (m)	Zn (ppm)	Prof. (m)	W (ppm)	Prof. (m)	Cu (ppm)	Prof. (m)	Ni (ppm)	Prof. (m)
S1A	<lq (23<sup="">cd)</lq>	17	<39 a c d	15	<50 bcd	15 e 17	373	15	<lq (334)<="" th=""><th>17</th><th><108 d</th><th>17</th><th><285 bcd</th><th>15</th></lq>	17	<108 d	17	<285 bcd	15
S1B	<lq (23<sup="">cd)</lq>	1,7	<38 a c d	1,7	<55 bcd	1,7	201	1,7	<lq (311)<="" th=""><th>1,7</th><th><lq (90)<="" th=""><th>1,7</th><th><321 bcd</th><th>1,7</th></lq></th></lq>	1,7	<lq (90)<="" th=""><th>1,7</th><th><321 bcd</th><th>1,7</th></lq>	1,7	<321 bcd	1,7
S2A	<lq (20<sup="">cd)</lq>	8,9	<33 acd	8,9	<46 bcd	8,9	279	8,9	<lq (305)<="" th=""><th>8,9</th><th><lq (86)<="" th=""><th>8,9</th><th><257 bcd</th><th>8,9</th></lq></th></lq>	8,9	<lq (86)<="" th=""><th>8,9</th><th><257 bcd</th><th>8,9</th></lq>	8,9	<257 bcd	8,9
S2B	<lq (23<sup="">cd)</lq>	0-1	<33 acd	0-1 e 9,4	<53 bcd	1,5	265	9,4	<lq (347)<="" th=""><th>0-1</th><th><106 d</th><th>0-1</th><th><293 bcd</th><th>1,5</th></lq>	0-1	<106 d	0-1	<293 bcd	1,5
S3A	<lq (23<sup="">cd)</lq>	3,5	<37 acd	1	<52 bcd	2	399	1	<lq (361)<="" th=""><th>2</th><th><lq (92)<="" th=""><th>2</th><th><332 bcd</th><th>2</th></lq></th></lq>	2	<lq (92)<="" th=""><th>2</th><th><332 bcd</th><th>2</th></lq>	2	<332 bcd	2
S3B	<lq (23<sup="">cd)</lq>	1; 3,5 e 5	<40 a c d	1	<54 bcd	3,5	325	2	<lq (373)<="" th=""><th>3,5</th><th><131 d</th><th>3,5</th><th><321 bcd</th><th>3,5</th></lq>	3,5	<131 d	3,5	<321 bcd	3,5
S4	<lq (24<sup="">cd)</lq>	6,5; 11; 14 e 17	<33 acd	6,5; 17 e 19	<56 bcd	17	225	19	<lq (363)<="" th=""><th>19</th><th><212 b d</th><th>19</th><th><317 bcd</th><th>11</th></lq>	19	<212 b d	19	<317 bcd	11
S5A	<lq (26<sup="">cd)</lq>	2	<48 a c d	2	<62 bcd	2	437	5,5	<lq (417)<="" th=""><th>2</th><th><146 d</th><th>2</th><th><330 bcd</th><th>2</th></lq>	2	<146 d	2	<330 bcd	2
S5B	<lq (23<sup="">cd)</lq>	2,5-3,5	<33 acd	2,5-3,5	<51 bcd	2,5-3,5	157	2,5-3,5	<lq (326)<="" th=""><th>2,5-3,5</th><th><lq (89)<="" th=""><th>2,5-3,5</th><th><310 bcd</th><th>2,5-3,5</th></lq></th></lq>	2,5-3,5	<lq (89)<="" th=""><th>2,5-3,5</th><th><310 bcd</th><th>2,5-3,5</th></lq>	2,5-3,5	<310 bcd	2,5-3,5
S6A	<lq (21<sup="">cd)</lq>	1 e 5	<36 a c d	1;6,5 e 9,5	<46 bcd	1 e 5	602 ^{c d}	5	<lq (291)<="" th=""><th>1</th><th><lq (92)<="" th=""><th>1</th><th><258 bcd</th><th>5</th></lq></th></lq>	1	<lq (92)<="" th=""><th>1</th><th><258 bcd</th><th>5</th></lq>	1	<258 bcd	5
S6B	<lq (20<sup="">cd)</lq>	1 e 8	<34 acd	1	<42 bcd	8	475	1	<lq (284)<="" th=""><th>1</th><th><lq (90)<="" th=""><th>1</th><th><232 bcd</th><th>8</th></lq></th></lq>	1	<lq (90)<="" th=""><th>1</th><th><232 bcd</th><th>8</th></lq>	1	<232 bcd	8
S7A	<lq (22<sup="">cd)</lq>	3,5	<39 a c d	3,5	<50 bcd	3,5	292	3,5	<lq (314)<="" th=""><th>3,5</th><th><lq (92)<="" th=""><th>8</th><th><282 bcd</th><th>8</th></lq></th></lq>	3,5	<lq (92)<="" th=""><th>8</th><th><282 bcd</th><th>8</th></lq>	8	<282 bcd	8
S7B	<lq (21<sup="">cd)</lq>	1 e 1,8	<39 a c d	1	<46 bcd	11,3	347	1	<lq (295)<="" th=""><th>1,8 e 11,3</th><th><101 d</th><th>9,5 e 11,3</th><th><270 bcd</th><th>11,3</th></lq>	1,8 e 11,3	<101 d	9,5 e 11,3	<270 bcd	11,3
S8	<lq (22<sup="">cd)</lq>	0-1,3;11,5 e 12-12,3	<38 acd	11,5	<49 bcd	0- 1;3;11,5 e 12-12,3	461	0-1,3	<lq (361)<="" th=""><th>12-12,3</th><th><lq (93)<="" th=""><th>12-12,3</th><th><268 bcd</th><th>11,5</th></lq></th></lq>	12-12,3	<lq (93)<="" th=""><th>12-12,3</th><th><268 bcd</th><th>11,5</th></lq>	12-12,3	<268 bcd	11,5

Quadro 8 – Resumo dos dados das análises *on site* – Metais (continuação)

Metais Sondagens	Co (ppm)	Prof. (m)	Fe (ppm)	Prof. (m)	Mn (ppm)	Prof. (m)	Cr (ppm)	Prof. (m)	V (ppm)	Prof. (m)	Ti (ppm)	Prof. (m)	Sc (ppm)	Prof. (m)
S1A	<1270 a b c d	0-1	91900 a	0-1	2540 a d	0-1	<lq (145)<="" td=""><td>14,8</td><td><400 a c</td><td>0-1</td><td>8770</td><td>14,8</td><td><lq (123)<="" td=""><td>0-1</td></lq></td></lq>	14,8	<400 a c	0-1	8770	14,8	<lq (123)<="" td=""><td>0-1</td></lq>	0-1
S1B	<1370 a b c d	1,7	119300 a	1,7	2350 a d	1,7	<lq (141)<="" td=""><td>1,7</td><td><400 a c</td><td>1,7</td><td>11800</td><td>1,7</td><td><lq (63)<="" td=""><td>1,7</td></lq></td></lq>	1,7	<400 a c	1,7	11800	1,7	<lq (63)<="" td=""><td>1,7</td></lq>	1,7
S2A	<1140 a b c d	8,9	79400 a	8,9	2900 a d	8,9	<lq (148)<="" td=""><td>8,9</td><td><470 a c</td><td>8,9</td><td>8940</td><td>8,9</td><td><lq (76)<="" td=""><td>8,9</td></lq></td></lq>	8,9	<470 a c	8,9	8940	8,9	<lq (76)<="" td=""><td>8,9</td></lq>	8,9
S2B	<1200 a b c d	1,5	86600 a	0-1	2440 a d	7,4	<lq (145)<="" td=""><td>9,4</td><td><460 a c</td><td>1,5</td><td>9320</td><td>1,5</td><td>142</td><td>0-1</td></lq>	9,4	<460 a c	1,5	9320	1,5	142	0-1
S3A	<1510 a b c d	2	154100 a	2	3140 a d	1	<lq (151)<="" td=""><td>1</td><td><470 a c</td><td>3,5</td><td>15100</td><td>2</td><td><lq (117)<="" td=""><td>3,5</td></lq></td></lq>	1	<470 a c	3,5	15100	2	<lq (117)<="" td=""><td>3,5</td></lq>	3,5
S3B	<1550 a b c d	2	141600 a	6,5	2870 a d	5	<lq (154)<="" td=""><td>1</td><td><600 a c</td><td>2</td><td>16200</td><td>6,5</td><td>165</td><td>3,5</td></lq>	1	<600 a c	2	16200	6,5	165	3,5
S4	<1580 a b c d	2	138900 a	2	3000 a d	1	<lq (152)<="" td=""><td>16,5</td><td><580 a c</td><td>2</td><td>15700</td><td>2</td><td><lq (173)<="" td=""><td>6,5</td></lq></td></lq>	16,5	<580 a c	2	15700	2	<lq (173)<="" td=""><td>6,5</td></lq>	6,5
S5A	<1060 a b c d	0,5-1,5	64800 a	0,5-1,5	2160 a d	4-5	<lq (167)<="" td=""><td>4-5</td><td><440 a c</td><td>2</td><td>7600</td><td>2</td><td>128</td><td>2</td></lq>	4-5	<440 a c	2	7600	2	128	2
S5B	<1030 a b c d	2,5-3,5	120000 a	2,5-3,5	1960 a d	2,5-3,5	<lq (149)<="" td=""><td>2,5-3,5</td><td><530 a c</td><td>2,5-3,5</td><td>11920</td><td>2,5-3,5</td><td><lq (100)<="" td=""><td>2,5-3,5</td></lq></td></lq>	2,5-3,5	<530 a c	2,5-3,5	11920	2,5-3,5	<lq (100)<="" td=""><td>2,5-3,5</td></lq>	2,5-3,5
S6A	<1070 a b c d	1	83300 a	5	4670 a d	6,5	<lq (168)<="" td=""><td>3,5</td><td><430 a c</td><td>1</td><td>6810</td><td>1</td><td><lq (100)<="" td=""><td>2</td></lq></td></lq>	3,5	<430 a c	1	6810	1	<lq (100)<="" td=""><td>2</td></lq>	2
S6B	<950 a b c d	1	60000 a	1	3410 a d	1	<lq (170)<="" td=""><td>3,5 e 6,2</td><td><370 a c</td><td>1 e 8</td><td>3760</td><td>8</td><td><lq (89)<="" td=""><td> 1</td></lq></td></lq>	3,5 e 6,2	<370 a c	1 e 8	3760	8	<lq (89)<="" td=""><td> 1</td></lq>	1
S7A	<1390 abcd	8	111400 a	8	2330 a d	1	<lq (156)<="" td=""><td>2</td><td><480 a c</td><td>5</td><td>12700</td><td>5</td><td><lq (128)<="" td=""><td>8</td></lq></td></lq>	2	<480 a c	5	12700	5	<lq (128)<="" td=""><td>8</td></lq>	8
S7B	<1330 abcd	11,3	101600 a	11,3	2580 a d	1	<lq (160)<="" td=""><td>6,5</td><td><450 a c</td><td>8</td><td>12300</td><td>9,5</td><td><lq (100)<="" td=""><td>1</td></lq></td></lq>	6,5	<450 a c	8	12300	9,5	<lq (100)<="" td=""><td>1</td></lq>	1
S8	<1310 abcd	2,5	98500 a	2,5	3460 a d	7,1	<lq (151)<="" td=""><td>9,9</td><td><400 a c</td><td>7,1</td><td>9490</td><td>2,5</td><td><lq (97)<="" td=""><td>12-12,3</td></lq></td></lq>	9,9	<400 a c	7,1	9490	2,5	<lq (97)<="" td=""><td>12-12,3</td></lq>	12-12,3

Quadro 8 – Resumo dos dados das análises *on site* – Metais (continuação)

Metais Sondagens	Ca (ppm)	Prof. (m)	K (ppm)	Prof. (m)	S (ppm)	Prof. (m)	Ba (ppm)	Prof. (m)	Cs (ppm)	Prof. (m)	Te (ppm)	Prof. (m)	Sb (ppm)	Prof. (m)
S1A	11300	0-1	5460	17	<59800	0-1	260	0-1	<lq< td=""><td>0-1</td><td><lq< td=""><td>0-1</td><td><lq (71bc)<="" td=""><td>0-1</td></lq></td></lq<></td></lq<>	0-1	<lq< td=""><td>0-1</td><td><lq (71bc)<="" td=""><td>0-1</td></lq></td></lq<>	0-1	<lq (71bc)<="" td=""><td>0-1</td></lq>	0-1
S1B	2160	1,7	<720	1,7	<51100	1,7	230	1,7	<lq< td=""><td>1,7</td><td><lq< td=""><td>1,7</td><td><lq (74bc)<="" td=""><td>1,7</td></lq></td></lq<></td></lq<>	1,7	<lq< td=""><td>1,7</td><td><lq (74bc)<="" td=""><td>1,7</td></lq></td></lq<>	1,7	<lq (74bc)<="" td=""><td>1,7</td></lq>	1,7
S2A	1030	8,9	8820	5,2	<53000	6,8	<197	6,8	<lq< td=""><td>8,9</td><td><lq< td=""><td>8,9</td><td><lq (67bc)<="" td=""><td>8,9</td></lq></td></lq<></td></lq<>	8,9	<lq< td=""><td>8,9</td><td><lq (67bc)<="" td=""><td>8,9</td></lq></td></lq<>	8,9	<lq (67bc)<="" td=""><td>8,9</td></lq>	8,9
S2B	26500	1,5	7100	9,4	<62100	1,5	525 ^d	1,5	<lq< td=""><td>0-1</td><td><lq< td=""><td>0-1 e 1,5</td><td><lq (90bc)<="" td=""><td>0-1</td></lq></td></lq<></td></lq<>	0-1	<lq< td=""><td>0-1 e 1,5</td><td><lq (90bc)<="" td=""><td>0-1</td></lq></td></lq<>	0-1 e 1,5	<lq (90bc)<="" td=""><td>0-1</td></lq>	0-1
S3A	7120	3,5	7770	1	<57300	3,5	453	3,5	<lq< td=""><td>3,5</td><td><lq< td=""><td>3,5</td><td><lq (84bc)<="" td=""><td>3,5</td></lq></td></lq<></td></lq<>	3,5	<lq< td=""><td>3,5</td><td><lq (84bc)<="" td=""><td>3,5</td></lq></td></lq<>	3,5	<lq (84bc)<="" td=""><td>3,5</td></lq>	3,5
S3B	11600	8,2	4340	1	<55800	8,2	402	2	<lq< td=""><td>8</td><td><lq< td=""><td>3,5</td><td><lq (94bc)<="" td=""><td>3,5</td></lq></td></lq<></td></lq<>	8	<lq< td=""><td>3,5</td><td><lq (94bc)<="" td=""><td>3,5</td></lq></td></lq<>	3,5	<lq (94bc)<="" td=""><td>3,5</td></lq>	3,5
S4	32800	3,5	2370	8	<69900	3,5	677 bd	2	<lq< td=""><td>14</td><td><lq< td=""><td>8</td><td><lq (106^{bc})</lq </td><td>17</td></lq<></td></lq<>	14	<lq< td=""><td>8</td><td><lq (106^{bc})</lq </td><td>17</td></lq<>	8	<lq (106^{bc})</lq 	17
S5A	12900	0,5-1,5	7490	4-5	<59300	0,5-1,5	<2213 b c d	4-5	<lq< td=""><td>2</td><td><lq< td=""><td>2</td><td><lq (94bc)<="" td=""><td>2</td></lq></td></lq<></td></lq<>	2	<lq< td=""><td>2</td><td><lq (94bc)<="" td=""><td>2</td></lq></td></lq<>	2	<lq (94bc)<="" td=""><td>2</td></lq>	2
S5B	5740	2,5-3,5	4250	0,5-0,95	<52400	2,5-3,5	<204	2,5-3,5	<lq< td=""><td>2,5-3,5</td><td><lq< td=""><td>2,5-3,5</td><td><lq (72bc)<="" td=""><td>2,5-3,5</td></lq></td></lq<></td></lq<>	2,5-3,5	<lq< td=""><td>2,5-3,5</td><td><lq (72bc)<="" td=""><td>2,5-3,5</td></lq></td></lq<>	2,5-3,5	<lq (72bc)<="" td=""><td>2,5-3,5</td></lq>	2,5-3,5
S6A	4850	2	25200	3,5	<58000	5	406	1	<lq< td=""><td>1</td><td><lq< td=""><td>1</td><td><lq (71bc)<="" td=""><td>1</td></lq></td></lq<></td></lq<>	1	<lq< td=""><td>1</td><td><lq (71bc)<="" td=""><td>1</td></lq></td></lq<>	1	<lq (71bc)<="" td=""><td>1</td></lq>	1
S6B	3070	1	21500	2	<54600	6,2	<207	6,2 e 8	<lq< td=""><td>6,2 e 8</td><td><lq< td=""><td>6,2 e 8</td><td><lq (57bc)<="" td=""><td>6,2 e 8</td></lq></td></lq<></td></lq<>	6,2 e 8	<lq< td=""><td>6,2 e 8</td><td><lq (57bc)<="" td=""><td>6,2 e 8</td></lq></td></lq<>	6,2 e 8	<lq (57bc)<="" td=""><td>6,2 e 8</td></lq>	6,2 e 8
S7A	8830	8	8910	1	<54400	8	410	8	<lq< td=""><td>8</td><td><lq< td=""><td>8</td><td><lq (78bc)<="" td=""><td>8</td></lq></td></lq<></td></lq<>	8	<lq< td=""><td>8</td><td><lq (78bc)<="" td=""><td>8</td></lq></td></lq<>	8	<lq (78bc)<="" td=""><td>8</td></lq>	8
S7B	4439	1	7600	1	<56000	1	309	10,5	<lq< td=""><td>1,8</td><td><lq< td=""><td>1,8</td><td><lq (69bc)<="" td=""><td>1,8</td></lq></td></lq<></td></lq<>	1,8	<lq< td=""><td>1,8</td><td><lq (69bc)<="" td=""><td>1,8</td></lq></td></lq<>	1,8	<lq (69bc)<="" td=""><td>1,8</td></lq>	1,8
S8	12600	12-12,3	7210	9,9	<53100	5,3	558 d	12-12,3	<lq< td=""><td>12-12,3</td><td><lq< td=""><td>12-12,3</td><td><lq (92bc)<="" td=""><td>12-12,3</td></lq></td></lq<></td></lq<>	12-12,3	<lq< td=""><td>12-12,3</td><td><lq (92bc)<="" td=""><td>12-12,3</td></lq></td></lq<>	12-12,3	<lq (92bc)<="" td=""><td>12-12,3</td></lq>	12-12,3

Quadro 8 – Resumo dos dados das análises *on site* – Metais (continuação)

Metais Sondagens	Sn (ppm)	Prof. (m)	Cd (ppm)	Prof. (m)	Ag (ppm)	Prof. (m)	Pd (ppm)	Prof. (m)
S1A	<lq (63d)<="" td=""><td>0-1</td><td><lq (53bcd)<="" td=""><td>0-1</td><td><lq (378<sup="">cd)</lq></td><td>0-1</td><td><lq< td=""><td>0-1</td></lq<></td></lq></td></lq>	0-1	<lq (53bcd)<="" td=""><td>0-1</td><td><lq (378<sup="">cd)</lq></td><td>0-1</td><td><lq< td=""><td>0-1</td></lq<></td></lq>	0-1	<lq (378<sup="">cd)</lq>	0-1	<lq< td=""><td>0-1</td></lq<>	0-1
S1B	<lq (65d)<="" td=""><td>1,7</td><td><lq (57bcd)<="" td=""><td>1,7</td><td><lq (398<sup="">cd)</lq></td><td>1,7</td><td><lq< td=""><td>1,7</td></lq<></td></lq></td></lq>	1,7	<lq (57bcd)<="" td=""><td>1,7</td><td><lq (398<sup="">cd)</lq></td><td>1,7</td><td><lq< td=""><td>1,7</td></lq<></td></lq>	1,7	<lq (398<sup="">cd)</lq>	1,7	<lq< td=""><td>1,7</td></lq<>	1,7
S2A	<lq (60d)<="" td=""><td>8,9</td><td><lq (51bcd)<="" td=""><td>8,9</td><td><lq (358<sup="">cd)</lq></td><td>8,9</td><td><lq< td=""><td>8,9</td></lq<></td></lq></td></lq>	8,9	<lq (51bcd)<="" td=""><td>8,9</td><td><lq (358<sup="">cd)</lq></td><td>8,9</td><td><lq< td=""><td>8,9</td></lq<></td></lq>	8,9	<lq (358<sup="">cd)</lq>	8,9	<lq< td=""><td>8,9</td></lq<>	8,9
S2B	<lq (79<sup="">d)</lq>	1,5	<lq (67<sup="">bcd)</lq>	0-1 e 1,5	<lq (498<sup="">cd)</lq>	0-1	<lq< td=""><td>1,5</td></lq<>	1,5
S3A	<lq (75<sup="">d)</lq>	3,5	<lq (65<sup="">bcd)</lq>	3,5	<lq (478<sup="">cd)</lq>	3,5	<lq< td=""><td>3,5</td></lq<>	3,5
S3B	<lq (81<sup="">d)</lq>	3,5	<lq (71bcd)<="" td=""><td>3,5</td><td><lq (528<sup="">cd)</lq></td><td>3,5</td><td><lq< td=""><td>3,5</td></lq<></td></lq>	3,5	<lq (528<sup="">cd)</lq>	3,5	<lq< td=""><td>3,5</td></lq<>	3,5
S4	<lq (91<sup="">d)</lq>	17	<lq (75<sup="">bcd)</lq>	19	<lq (568<sup="">cd)</lq>	8	<lq< td=""><td>8</td></lq<>	8
S5A	<lq (82<sup="">d)</lq>	2	<lq (69bcd)<="" td=""><td>2</td><td><lq (498<sup="">cd)</lq></td><td>2</td><td><lq< td=""><td>2</td></lq<></td></lq>	2	<lq (498<sup="">cd)</lq>	2	<lq< td=""><td>2</td></lq<>	2
S5B	<lq (64<sup="">d)</lq>	2,5-3,5	<lq (55bcd)<="" td=""><td>2,5-3,5</td><td><lq (398<sup="">cd)</lq></td><td>2,5-3,5</td><td><lq< td=""><td>2,5-3,5</td></lq<></td></lq>	2,5-3,5	<lq (398<sup="">cd)</lq>	2,5-3,5	<lq< td=""><td>2,5-3,5</td></lq<>	2,5-3,5
S6A	<lq (63d)<="" td=""><td>1</td><td><lq (52<sup="">bcd)</lq></td><td>1</td><td><lq (378<sup="">cd)</lq></td><td>1</td><td><lq< td=""><td>1</td></lq<></td></lq>	1	<lq (52<sup="">bcd)</lq>	1	<lq (378<sup="">cd)</lq>	1	<lq< td=""><td>1</td></lq<>	1
S6B	<lq (50d)<="" td=""><td>2; 6,2 e 8</td><td><lq (43bcd)<="" td=""><td>6,2 e 8</td><td><lq (308cd)<="" td=""><td>2; 6,2 e 8</td><td><lq< td=""><td>2 e 6,2</td></lq<></td></lq></td></lq></td></lq>	2; 6,2 e 8	<lq (43bcd)<="" td=""><td>6,2 e 8</td><td><lq (308cd)<="" td=""><td>2; 6,2 e 8</td><td><lq< td=""><td>2 e 6,2</td></lq<></td></lq></td></lq>	6,2 e 8	<lq (308cd)<="" td=""><td>2; 6,2 e 8</td><td><lq< td=""><td>2 e 6,2</td></lq<></td></lq>	2; 6,2 e 8	<lq< td=""><td>2 e 6,2</td></lq<>	2 e 6,2
S7A	<lq (69<sup="">d)</lq>	8	<lq (58bcd)<="" td=""><td>8</td><td><lq (418<sup="">cd)</lq></td><td>8</td><td><lq< td=""><td>8</td></lq<></td></lq>	8	<lq (418<sup="">cd)</lq>	8	<lq< td=""><td>8</td></lq<>	8
S7B	<lq (61<sup="">d)</lq>	1,8	<lq (52<sup="">bcd)</lq>	1,8	<lq (368<sup="">cd)</lq>	1,8	<lq< td=""><td>1,8</td></lq<>	1,8
S8	<lq (80<sup="">d)</lq>	12-12,3	<lq (68bcd)<="" td=""><td>12-12,3</td><td><lq (498<sup="">cd)</lq></td><td>12-12,3</td><td><lq< td=""><td>12-12,3</td></lq<></td></lq>	12-12,3	<lq (498<sup="">cd)</lq>	12-12,3	<lq< td=""><td>12-12,3</td></lq<>	12-12,3

LEGENDA

Análises on site

LQ – Limite de quantificação

<50 ou <LQ (50) – Limite de quantificação com grau de incerteza da ordem do valor medido

a - Valores > Critérios USEPA

b – Valores > Legislação da Holanda

c – Valores > Legislação de Ontário

d – Valores > Legislação de Quebeque

Quadro 9 – Resumo dos dados das análises laboratoriais (valores em ppm)

Sondagem	Referência	Metais	BTEX	VOCs	VOCs não	PAHs			bonetos do	Petróleo	
(Prof.)	Laboratório	motalo	2.2.	halogenados	halogenados		C ₁₀ - C ₁₂	C ₁₀ - C ₄₀	C ₁₂ - C ₁₆	C ₁₆ - C ₃₅	C ₃₅ - C ₄₀
Branco de amostragem	111000001			Tetracloroeteno 0,027							
S1A (15,0 - 16,0 m)	111000002	As ^a , Fe ^a , Mn ^{ad} , V ^a		Tetracloroeteno 0,035							
S1B (1,0 - 2,0 m)	111000003	As ^a , Fe ^a , Mn ^{ad} , V ^a		Tetracloroeteno 0,031							
S1B (15,4 - 17,0 m)	111000004	As ^a , Fe ^a , Mn ^d , V ^a		Tetracloroeteno 0,026				21		14	5
S2A (5,8 - 6,8 m)	111000005	Asa, Mnad, Va		Tetracloroeteno 0,025							
S2A (7,9 - 8,9)	111000006	Asa, Mnad, Va		Tetracloroeteno 0,033				32		28	
S2B (4,2 - 5,2 m)	111000007	As ^a , Fe ^a , Mn ^{ad} , V ^a		Tetracloroeteno 0,032		Naftaleno 0,011					
S2B (6,4 - 7,4 m)	111000008	Asa, Mnad, Va									
S2B (8,4 - 9,4 m)	111000009	As ^a , Fe ^a , Mn ^d , V ^a		Tetracloroeteno 0,037							
S3A (1,0 - 2,0 m)	111000010	As ^a , Fe ^a , Mn ^{ad} , V ^a		Tetracloroeteno 0,030							
S3A (2,5 - 3,5 m)	111000011	Asa, Co ^{acd} , Fea, Mnd, Vac		Tetracloroeteno 0,031							
S3B (2,5 - 3,5 m)	111000012	As ^a , Co ^{acd} , Fe ^a , Mn ^{ad} , V ^a		Tetracloroeteno 0,025							
S3B (4,0 - 5,0 m)	111000013	Asa, Mnd, Va						86	5	80	
S3B (7,0 - 8,0 m)	111000014	Asa, Co ^{acd} , Fea, Mnd, Va		Tetracloroeteno 0,044							
S4 (5,5 - 6,5 m)	111000015	As ^a , Co ^a , V ^a		Tetracloroeteno 0,028							

Quadro 9 – Resumo dos dados das análises laboratoriais (valores em ppm - continuação)

Sondagem	Referência			VOCs	VOCs	,	ppin - contil		bonetos do	Petróleo	
(Prof.)	Laboratório	Metais	BTEx	Halogenados	não halogenados	PAHs	C ₁₀ - C ₁₂	C ₁₀ - C ₄₀	C ₁₂ - C ₁₆	C ₁₆ - C ₃₅	C ₃₅ - C ₄₀
S4 (11,5 - 12,5 m)	111000016	Va		Tetracloroeteno 0,027	, , ,	Naftaleno 0,010					
S4 (16,0 - 17,0 m)	111000017	As ^a , Co ^{ac} , Fe ^a , Mn ^d , V ^a		Tetracloroeteno 0,041							
S5A (0,5 - 1,5 m)	111000018	Asa, Fea, Mnad, Va		Tetracloroeteno 0,036							
S5A (2,0 - 3,0 m)	111000019	Asa		Tetracloroeteno 0,032		Naftaleno 0,011		28		25	
S5A (5,5 - 6,0 m)	111000020	As ^a , Mn ^d , V ^a		Tetracloroeteno 0,029				41		30	9
S5B (0,5 - 1,5 m)	111000021	As ^a , Fe ^a , Mn ^d , V ^a		Tetracloroeteno 0,030		Naftaleno 0,041					
S5B (2,5 - 3,5 m)	111000022	As ^a , Co ^a , Fe ^a , Mn ^d , V ^a		Tetracloroeteno 0,024							
S5B (4,0 - 5,0 m)	111000023	Asa, Coa, Fea, Va		Tetracloroeteno 0,027		Naftaleno 0,025				16	
S6A (1,1 - 2,0 m)	111000024	Asa, Mnad, Va		Tetracloroeteno 0,031							
S6A (2,5 - 3,5 m)	111000025	Asa		Tetracloroeteno 0,032							
S6A (4,0 - 5,0 m)	111000026	Asa, Mnd, Va		Tetracloroeteno 0,038							
S6A (5,5 - 6,5 m)	111000027	As ^a , Fe ^a , Mn ^d , V ^a		Tetracloroeteno 0,032		Naftaleno 0,050		30		21	8
S6B (1,0 - 2,0 m)	111000028	Asa, Mnad, Va				Naftaleno 0,054					
S6B (2,5 - 3,5 m)	111000029	Asa		Tetracloroeteno 0,026		Naftaleno 0,011					
S6B (7,0 - 8,0 m)	111000030	As ^a , Co ^a , , Mn ^{ad} , V ^a		Tetracloroeteno 0,039							

Quadro 9 – Resumo dos dados das análises laboratoriais (valores em ppm - continuação)

Sondagem	Referência	Metais	BTEx	VOCs	VOCs não	PAHs			rbonetos do	Petróleo	
(Prof.)	Laboratório	Wicturs	DILX	Halogenados	halogenados	17(1)	C ₁₀ - C ₁₂	C ₁₀ - C ₄₀	C ₁₂ - C ₁₆	C ₁₆ - C ₃₅	C ₃₅ - C ₄₀
S6B (10,0 - 11,0 m)	111000031	Asa, Va		Tetracloroeteno 0,031							
S7A (4,0 - 5,0 m)	111000032	As ^a , Co ^{ac} , Fe ^a , Mn ^d , V ^{ac}		Tetracloroeteno 0,034							
S7A (5,5 - 6,5 m)	111000033	As ^a , Co ^{ac} , Fe ^a , Mn ^d , V ^{ac}	Etilb. 0,020 Xils. 0,024	Tetracloroeteno 0,022	Stireno 0,079	Naftaleno 0,012					
S7A (7,0 - 8,0 m)	111000034	As ^a , Co ^a , Fe ^a , Mn ^{ad} , V ^a		Tetracloroeteno 0,030		Naftaleno 0,010					
S7B (2,5 - 3,5 m)	111000035	Asa, Fea, Mnad, Va		Tetracloroeteno 0,029				26		22	
S7B (5,5 - 6,5 m)	111000036	Asa, Mnad, Va		Tetracloroeteno 0,025					4		
S7B (8,5 - 9,5 m)	111000037	As ^a , Fe ^a , Mn ^d , V ^a		Tetracloroeteno 0,034							
S8 (4,5 - 5,4 m)	111000038	Asa, Mnd, Va		Tetracloroeteno 0,026		Naftaleno 0,019					
S8 (6,0 - 7,0 m)	111000039	As ^a , Fe ^a , Mn ^{ad} , V ^a		Tetracloroeteno 0,039		Naftaleno 0,071					
S8 (9,0 - 10,0 m)	111000040	As ^a , Co ^a , Fe ^a , Mn ^d , V ^a		Tetracloroeteno 0,026		Naftaleno 0,029					
S2A duplicado (7,9 - 8,9 m)	111000041	Asa, Mnad, Va						26		23	
S3B duplicado (4,0 - 5,0 m)	111000042	Asa, Mnd, Va		Tetracloroeteno 0,030				77	4	72	
S7B duplicado (2,5 - 3,5 m)	111000043	As ^a , Co ^a , Fe ^a , Mn ^d , V ^a		Tetracloroeteno 0,032				29		25	
Amostra regional 1	111000044	As ^a , Mn ^d , V ^a						50		34	16
Amostra regional 2	111000045	Asa, Fea, Mnad, Va		Tetracloroeteno 0,035 Tricloroeteno 0,011							

Quadro 9 - Resumo dos dados das análises laboratoriais (valores em ppm - continuação)

LEGENDA

- a Valores > Critérios USEPA
- b Valores > Legislação da Holanda
- c Valores > Legislação de Ontário
- d Valores > Legislação de Quebeque

6.2 Interpretação de resultados

6.2.1 Análises on site

64

Os resultados obtidos nos ensaios *on site* para os compostos orgânicos mostram que estes só foram detectados na S5A/S5B, não atingindo a gama de valores de alerta que obrigassem a acções futuras.

Relativamente aos metais, pode-se observar que, em todas as sondagens, os resultados das análises de Mo, apesar de estarem abaixo do limite de quantificação da FRX directa, poderão, nalguns casos, estar acima do valor limite da legislação de Quebeque (Quadro 8 e Anexo 3).

Os valores de Se, apesar de estarem abaixo do valor limite de quantificação da FRX directa, devido à incerteza do método, que é da ordem de grandeza da avaliação, poderão estar acima dos valores limites das legislações de Ontário e de Quebeque. Os resultados das análises de As e de Hg apresentam igual limitação, mas poderão estar acima dos valores limites das legislações/critérios da USEPA, de Ontário e de Quebeque e das legislações da Holanda, de Ontário e de Quebeque, respectivamente, em todas as sondagens.

Para o Zn, apenas a S6A apresentou valores superiores aos valores limites das legislações de Ontário e de Quebeque. O Cu poderá apresentar valores superiores aos valores limites da legislação de Quebeque para S1A, S2B, S3B, S4, S5A e S7B e valores superiores aos valores limites da legislação da Holanda para a S4, pelas razões acima referidas relacionadas com a incerteza.

Os resultados do Ni poderão ser superiores aos valores limites das legislações da Holanda, de Ontário e de Quebeque, em todas as sondagens, de acordo com o anteriormente referido para as incertezas. Porém os valores para o Co poderão ser superiores aos limites de todas as legislações (critérios) consultadas, também em todas as sondagens, tendo em conta as incertezas obtidas.

Os valores do Fe são superiores aos valores limites dos critérios da USEPA, enquanto os valores de Mn são superiores aos valores limites dos critérios/legislação da USEPA e de Quebeque, em todas as sondagens.

Os valores do V poderão ultrapassar os valores limites dos critérios/legislação da USEPA e de Ontário, tendo em atenção o grau de incerteza do método de análise.

Quanto aos valores do Ba, verifica-se que são ou poderão ser superiores aos valores limites para S2B (legislação de Quebeque), para S4 (legislações da Holanda e de Quebeque), para S5A (legislações da Holanda, de Ontário e de Quebeque) e para S8 (legislação de Quebeque).

Os valores determinados nas amostras recolhidas em todas as sondagens poderão ser superiores aos valores limites das legislações da Holanda e de Ontário para o Sb, poderão ser superiores ao limite da legislação de Quebeque para o Sn, poderão ser superiores aos limites das legislações da Holanda, de Ontário e de Quebeque para o Cd e poderão ser superiores aos limites das legislações de Ontário e de Quebeque para a Aq, de acordo com o grau de incerteza obtido.

Verifica-se que alguns valores mais elevados estão presentes junto a rodovias ou são causados por outras actividades não relacionadas com as que foram objecto deste estudo.

6.2.2 Análises laboratóriais

As análises realizadas em laboratório em solos não mostraram evidências de presença de compostos orgânicos acima dos limites impostos pelos critérios/legislações consultados. Nestas análises, verificou-se a presença de tetracloroeteno (PCE), em quase todas as amostras, mas que se suspeita estar relacionada com a contaminação do metanol pelos septa dos *Vials*. No entanto, estes valores estão bastante abaixo dos limites das legislações, sendo considerados desprezáveis.

Verificou-se, também, na amostra regional 2, a presença de tricloroeteno (TCE), mas em quantidade desprezável.

O naftaleno aparece em 29% das amostras de laboratório, em quantidade bastante inferior aos limites das legislações consultadas. Também em 29% das amostras aparecem TPHs em quantidade inferior aos limites das legislações consultadas. Acrescente-se que a presença de naftaleno e de TPH não coincidem sempre nas mesmas amostras.

A amostra S7A (5,5 – 6,5 m) apresentou vestígios de etilbenzeno, de xilenos, de stireno, de tetracloroeteno e de naftaleno, abaixo dos limites das legislações consultadas.

Quanto à presença de elementos metálicos:

- 98% das amostras de laboratório apresentaram As em quantidades superiores aos valores limites dos critérios da USEPA.

- 93% e 7% das amostras de laboratório apresentaram V em quantidades superiores aos valores limites dos critérios/legislação da USEPA e de Ontário, respectivamente.
- 84% e 41% das amostras de laboratório apresentaram Mn em quantidades superiores aos valores limites dos critérios/legislação de Quebeque e de USEPA, respectivamente.
- 55% das amostras de laboratório apresentaram Fe em quantidades superiores aos valores limites dos critérios da USEPA.
- 30%, 14% e 7% das amostras de laboratório apresentaram Co em quantidades superiores aos valores limites dos critérios/legislações da USEPA, de Ontário e de Quebeque, respectivamente.

6.3 Controlo de Qualidade

O controlo de qualidade das tarefas realizadas na recolha, no acondicionamento e na cadeia de custódia das amostras para os laboratórios e nos ensaios de laboratório para a identificação e quantificação de elementos e compostos referidos, foi realizado com recurso a um "branco" de amostragem, à duplicação de 3 amostras e à recolha de 2 amostras regionais, conforme referido na Secção 5.6. Foi ainda realizada uma avaliação da influência da matriz nos resultados obtidos, tendo, para isso, sido realizada em laboratório uma amostra dopada (Matrix spike), que foi posteriormente analisada para verificar as taxas de recuperação dos elementos a analisar pelos métodos propostos. Foi, igualmente, duplicada a avaliação de determinados parâmetros para controlo interno do laboratório, com resultados bastante bons. Foi, ainda, realizado o controlo de qualidade do método numa matriz referência, dopada em quantidades conhecidas, como se de um padrão se tratasse, tendo por objectivo verificar alguma potencial contaminação introduzida pelo método. Além disso foi analisada uma amostra de controlo para determinação da exactidão (precisão e veracidade), independentemente da matriz do solo.

Da observação dos resultados do branco de amostragem (amostra de referência 111000001), verificou-se que existe uma contaminação por tetracloroteneo (PCE), que parece estar associada à reacção com os septa dos *Vials*.

Quanto à duplicação das amostras, existem três amostras que foram duplicadas e que, na generalidade, sobre as quais se obteve uma de boa reprodução (Quadro 10). A Amostra S2A (7,9 – 8,9 m) deu bons resultados, a amostra S3B (4,0 – 5,0 m) deu muito bons resultados e a amostra

S7B (2,5-3,5 m) deu resultados menos próximos em alguns elementos metálicos (por exemplo, Mn – 2290 ppm para 1410 ppm – e P – 226 ppm para 1460 ppm).

Quadro 10 – Amostras duplicadas – alguns parâmetros importantes

Referência Amostra	PCE (ppm)	Co (ppm)	V (ppm)	TPH (ppm)	Referência Amostra duplicada	PCE (ppm)	Co (ppm)	V (ppm)	TPH (ppm)
111000006 S2A (7,9 – 8,9 m)	0,033	22,8	46,4	Similar	111000041 S2A (7,8 – 8,9 m)	< limite	20,6	43,2	Similar
111000013 S3B (4,0 – 5,0 m)	< limite	10,9	89,9	Similar	111000042 S3B (4,0 – 5,0 m)	0,030	10,9	89,0	Similar
111000035 S7B (2,5 – 3,5 m)	0,029	12,3	83,6	Similar	111000043 S7B (2,5 – 3,5 m)	0,032	23,9	103	Similar

As amostras regionais deram resultados surpreendentes. Estas amostras (referências 111000044 – amostra regional 1 e 111000045 – amostra regional 2) foram recolhidas em locais afastados de todas as actividades relacionadas com a armazenagem, a trasfega e o abastecimento com hidrocarbonetos e foram as que deram os resultados mais elevados em termos de PAHs. A amostra regional 1 deu TPH e ambas as amostras apresentaram valores para os elementos metálicos – As, Fe, Mn e V acima dos limites considerados.

Os procedimentos de controlo interno do laboratório deram bons resultados. A determinação do naftaleno foi o método que deu taxas médias de recuperação mais baixas, na ordem dos 80%.

6.4 Outros Parâmetros

Diversos parâmetros foram determinados nos laboratórios ALS ou Quimiteste, nomeadamente, perda por ignição (correspondente teor em carbono), determinação da matéria seca (correspondente teor em água), índice de fenóis, nitratos, sulfatos e nitratos como N, pH, condutividade eléctrica e potencial redox em todas as amostras sólidas.

Relativamente à interpretação dos dados obtidos, faz-se referência, em particular, a alguns parâmetros: o pH, o teor em sulfato, o teor em água/matéria sólida, o teor em carbono e o estado de redução.

Em termos da acidez do meio, analisaram-se as amostras recolhidas, que se classificaram como:

- 4 amostras ligeiramente ácidas;
- 29 amostras neutras;
- 11 amostras moderadamente alcalinas.

A importância do ião sulfato está relacionada com a eventual agressividade do meio aos materiais de construção nele inseridos. De acordo com os resultados dos ensaios de laboratório, a quantidade de sulfatos é insignificante ou desprezável.

Quanto ao teor em água, os valores variaram entre um mínimo de 18,3% (81,7% de matéria sólida – 111000015 \equiv S4 5,5-6,5 m) e um máximo de 50,6% (49,4% de matéria sólida – 111000037 \equiv S7B 8,5-9,5 m). Por sua vez, o teor em carbono varia entre um mínimo de 0,39% (111000015 \equiv S4 5,5-6,5 m) e um máximo de 22,9% (111000019 \equiv S5A 2,0-3,0 m).

Quanto ao estado de redução dos solos recolhidos, todos se apresentam fracamente reduzidos. A condutividade eléctrica é, em geral, baixa.

Relativamente ao índice fenol, algumas amostras de solos deram valores superiores a 0,5 mg.kg⁻¹, sendo elas: 111000002 (\equiv S1A 15,0-16,0 m), 111000008 (\equiv S2B 6,4-7,4 m), 111000012 (7,69 mg.kg⁻¹ \equiv S3B 2,5-3,5 m), 111000013 (\equiv S3B 4,0-5,0 m), 111000014 (\equiv S3B 7,0-8,0 m), 111000017 (\equiv S4 16,0-17,0 m), 111000019 (\equiv S5A 2,0-3,0 m), 111000021 (\equiv S5B 0,5-1,5 m), 111000022 (\equiv S5B 2,5-3,5 m), 111000023 (\equiv S5B 4,0-5,0 m), 111000034 (\equiv S7A 7,0-8,0 m), 111000037 (\equiv S7B 8,5-9,5 m), 111000038 (\equiv S8 4,5-5,4 m), 111000042 (\equiv S3B 4,0-5,0 m), 111000043 (\equiv S7B 2,5-3,5 m) e 111000045 (\equiv Amostra regional 2).

7. CONSIDERAÇÕES FINAIS E CONCLUSÕES

O estudo realizado permite concluir, numa primeira aproximação, que não existe uma situação de contaminação de solos por compostos orgânicos, nos locais interessados, apesar de se ter observado, na sondagem S5A/S5B, um aspecto oleoso na água superficial do local (solo alagado) e de se terem medido *on site* valores de VOCs de 10,5 ppm. Quanto ao índice fenol, várias amostras apresentaram valores acima do limite de 0,5 mg.kg⁻¹.

Quanto aos metais, verificou-se um conjunto de elementos que apareceram em grande parte das amostras sólidas analisadas em laboratório, essencialmente acima dos valores limites dos critérios da USEPA, como sejam: As, Co, Fe, Mn e V. Nenhum destes elementos ultrapassou os valores limites da Legislação da Holanda e só para o Mn, Co e V há valores superiores aos limites impostos pelas Legislações de Ontário e/ou de Quebeque.

Com excepção da zona do South Tank Farm (S5A e S5B), as actividades de armazenagem de combustíveis cessou ou foi substituída por unidades recentes, como é o caso da Main Gate (S6A e S6B). Desta forma, pode estar a ocorrer uma degradação natural dos compostos orgânicos, que controla os processos de transporte. Assim, é limitada a circulação pelo meio subterrâneo, horizontalmente e verticalmente. Neste estudo, apenas se possui informação para se abordar a expansão das manchas de potenciais contaminações na horizontal a uma escala maior, independentemente das sondagens realizadas.

Os processos que influenciam o comportamento dos elementos metálicos nos solos estão muito dependentes da granulometria do solo, do pH, do teor em matéria orgânica e da existência de óxidos e hidróxidos.

Relativamente aos resultados obtidos, as amostras regionais, que deveriam mostrar a ausência de elementos em concentrações acima dos Valores Máximos Admissíveis (VMAs), para as legislações consideradas, apresentaram concentrações significativas de As, de Fe, de Mn, e de V (o As é um caso particular, devido à disparidade dos valores limites das legislações), a partir de ensaios realizados em laboratório. Apesar de não esperado, as amostras regionais também foram as únicas que apresentarem PAHs cancerígenos e não cancerígenos.

Este facto pode estar relacionado com o facto dos pontos em causa se situarem a cotas mais elevadas, no bordo do graben, e estarem mais expostos aos efeitos de aterragem e de descolagem

de aeronaves. Por outro lado, a presença dos metais poderá estar, também, relacionada com a geologia local/regional.

Outros parâmetros foram avaliados para caracterização dos solos, sendo particularmente importante a referência a valores de pH compreendidos entre 6,4 e 8,2.

No estudo realizado, o controlo de qualidade parece mostrar que todas as operações da cadeia de custódia para laboratório ou de homogeneização das amostras ocorreram da forma mais conveniente, existindo uma congruência dos valores de resultados analíticos obtidos na duplicação de amostras (controlo de qualidade externo).

Lisboa e Laboratório Nacional de Engenharia Civil, Junho de 2010

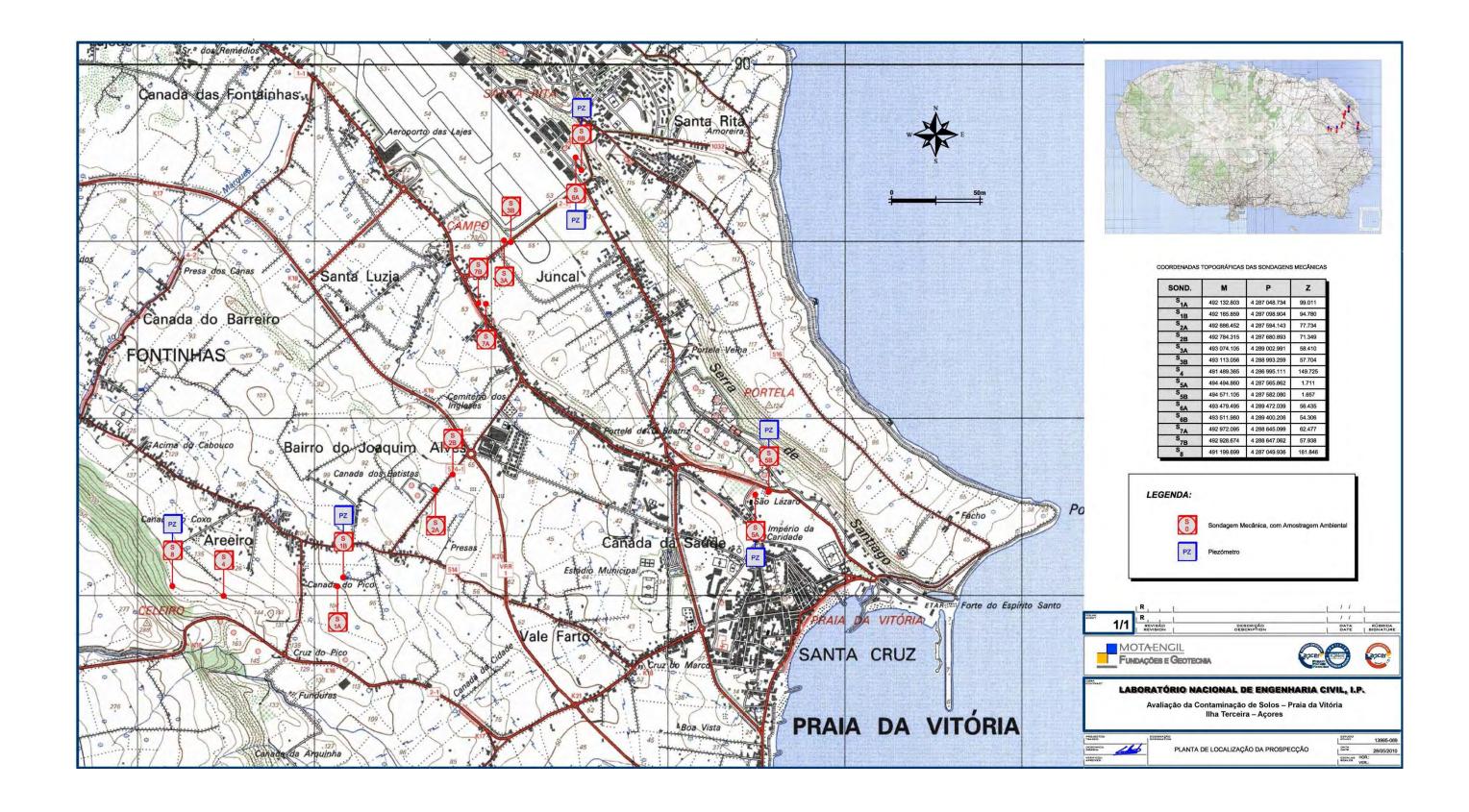
VISTOS

AUTORIA

O Chefe do Núcleo de Geologia de Engenharia

Filipe Telmo Jeremias

Celeste Jorge Investigadora Auxiliar

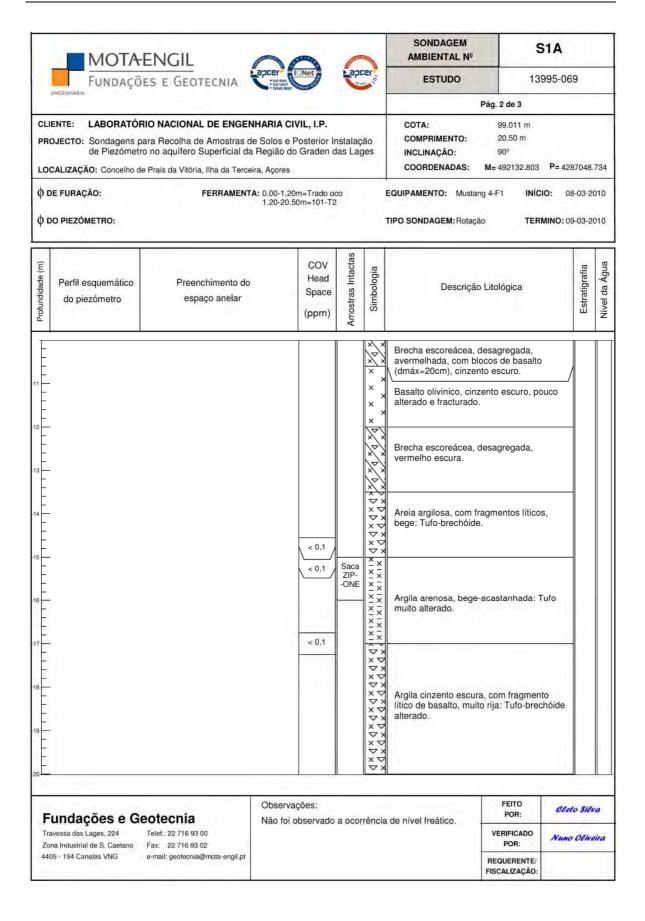

A Directora do Departamento de Geotecnia

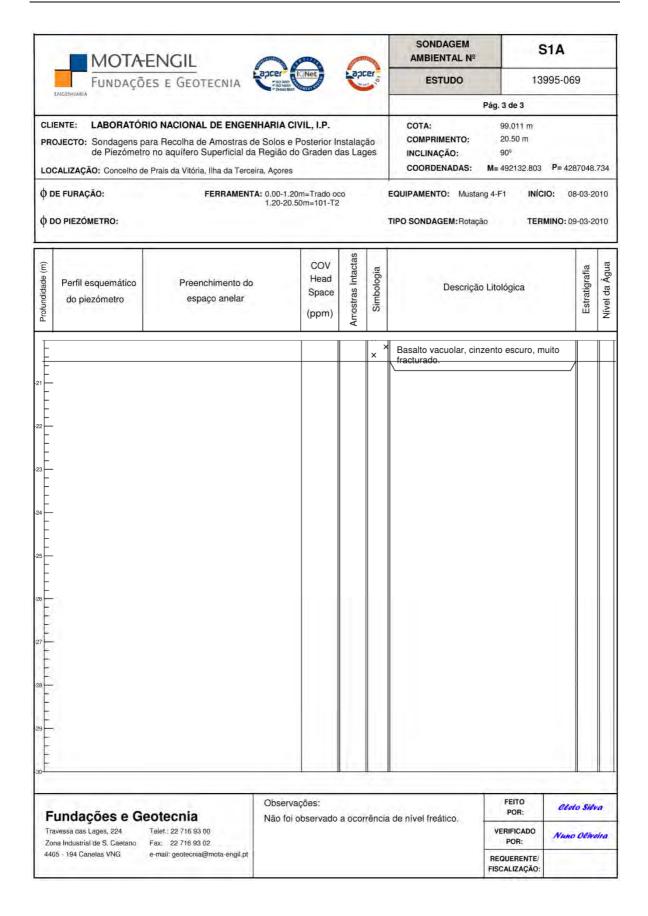
Laura Caldeira

BIBLIOGRAFIA

- [1] LNEC (2009) Especificações Técnicas. Avaliação da contaminação dos solos na Base Aérea das Lajes e nas áreas associadas – Ilha Terceira, Açores. Laboratório Nacional de Engenharia Civil, Relatório 180/2009, Lisboa.
- [2] Cleary, C.; D. Kachek, T. Liefer e R. Zruba (1997) Environmental Survey for 3 Sites. Lajes Field, Azores, Portugal, Final Report. USACE, April.
- [3] CH2MHILL (2004) Data Summary Report Groundwater Sampling at Lajes Field, Azores, Portugal. Contract F41624-03-D-8595, Task Order 184, October.
- [4] Bhate Associates (2008) Risk Assessment Summary of Findings for Sites 5001 (South Tank Farm), 3001 (Main Gate Area) and Data Gap Sampling at Lajes Field, Azores, Portugal.
- [5] AMEC (2009) Soil Investigation Near an Abandonened Communication Cable Lajes Field, Azores, Portugal. AMEC Earth & Environmental Project n.º 377120114, February.
- [6] Rodrigues, L.N. (2000) As Negociações que Nunca Acabaram A renovação do acordo das Lajes em 1962. Penélope, N.º 22, pp.3-70.
- [7] MOTA-ENGIL (2010) LNEC, I.P. Realização de Sondagens para Recolha de Amostras de Solos e Posterior Instalação de Piezómetros no Aquífero Superficial da Região do Graben das Lajes Concelho de Praia da Vitória, Ilha Terceira Açores. Junho.
- [8] Centro de Vulcanologia da Universidade do Açores (1990) Carta Vulcanológica da Ilha Terceira, na escala 1:200 000.
- [9] Lloyd, E.F.e S.K. Collis (1981) Carta Geológica da Terceira, na escala 1:25 000. Relatório interno da Secretaria Regional do Comércio e Indústria.
- [10] Documento electrónico http://fhp.osd.mil/factsheetDetail.jsp?fact=37
- [11] AmbiPar Control (2010) Relatório de Ensaios Amostragem e análise de solos. LNEC Laboratório Nacional de Engenharia Civil, I.P. AmbiPar Control, Consultoria, análises e amostragem ambiental, Lda. Abril.

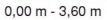
Avaliação da Contaminação de Solos –	Praia da Vitória, Ilha	Terceira – Açores	
		NEYO 1 Dianta	do Localização
	,	ANEXO 1 – Planta	ue Lucalização




LNEC - Proc. 0607/1/17171; Proc. Int. 0504/541/1279

A . I' ~ I .	O - 1 · · · · · · ·	1. 0.1.	D	III	Λ
Avaliacao da	Contaminação o	de Solos –	Praia da Vitoria	. Ilna Terceira –	Acores

ANEXO 2 – Sondagens Mecânicas/ Piezómetros e Caixas de Amostras

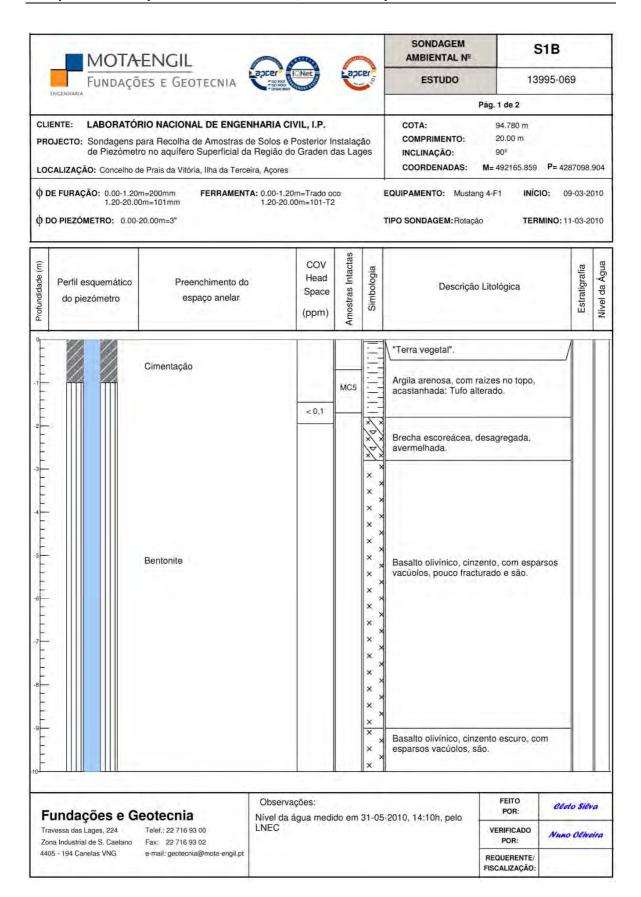


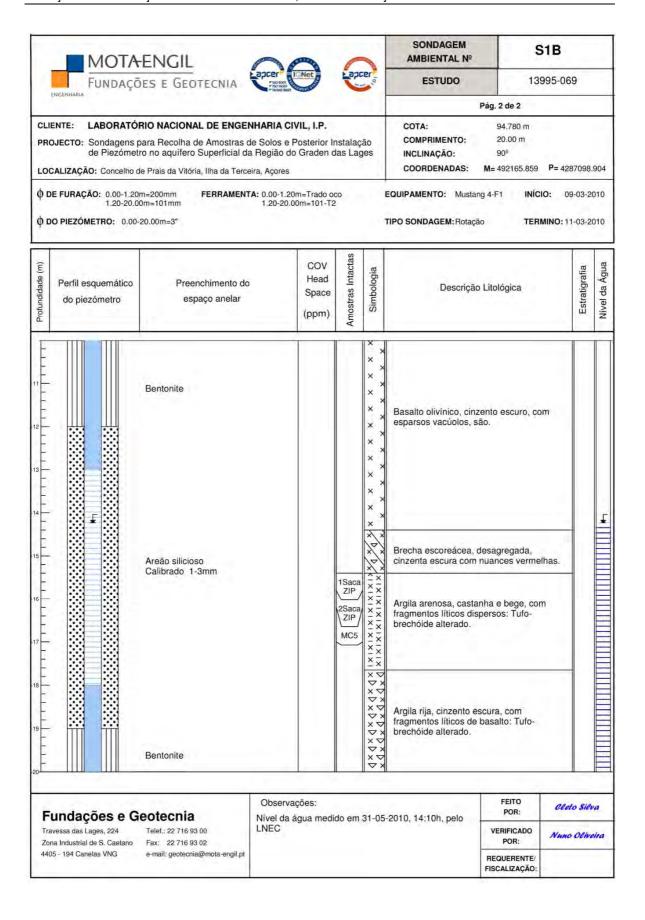
300

 S_{1A}

3,60 m - 6,30 m

6,30 m - 9,20 m


 S_{1A}



9,20 m - 15,60 m

15,60 m - 20,50 m

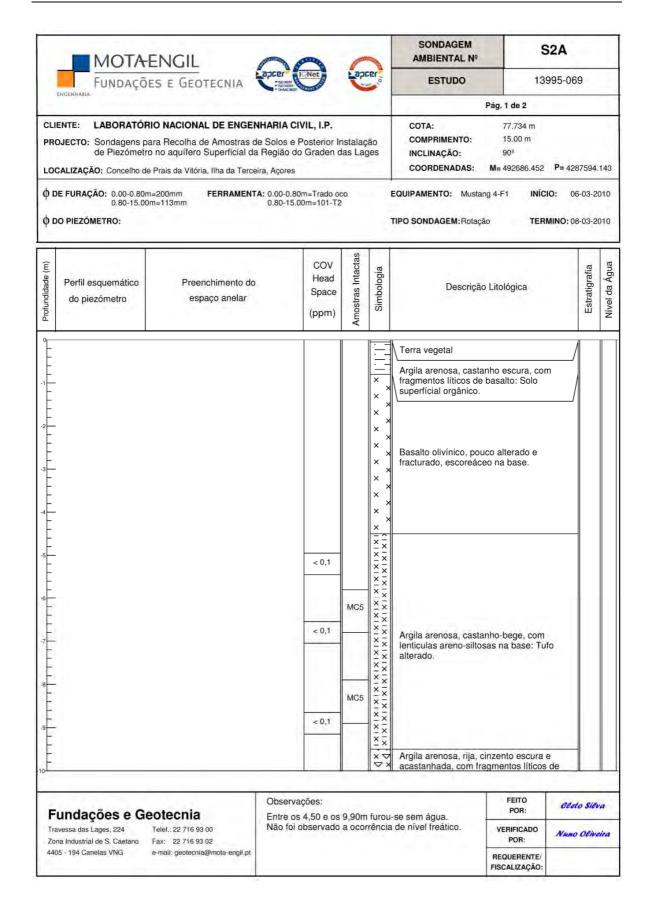
S_{1B}

4,60 m - 6,50 m

6,50 m - 9,20 m

S_{1B}

11,50 m - 13,60 m



13,60 m - 16,50 m

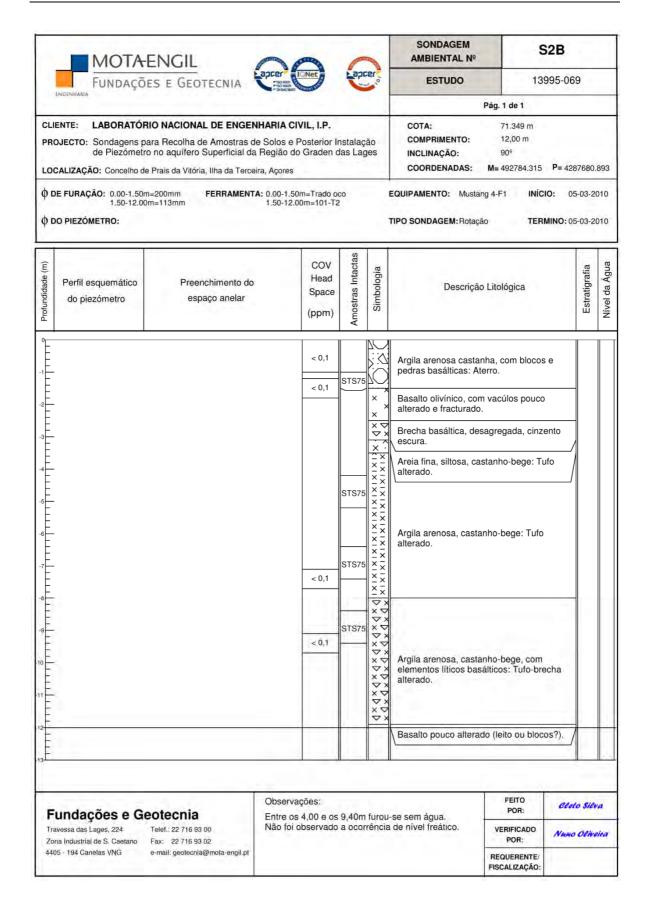
 S_{1B}

16,50 m - 20,00 m

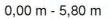
MOTAENGIL		STATE OF THE PARTY OF		SONDAGEM AMBIENTAL Nº	S	32A	
FUNDAÇÕES E GEOTECNIA	apcer IONet	арс	er i	ESTUDO	139	995-069	
ENGENHARIA					Pág. 2 de 2		
PROJECTO: Sondagens para Recolha de Amostras de Prezómetro no aquifero Superficial da OCALIZAÇÃO: Concelho de Prais da Vitória, Ilha da Tercei	e Solos e Posterior Ir Região do Graden d	nstalaçi las Lag	ão es	COTA: COMPRIMENTO: INCLINAÇÃO: COORDENADAS:	77,734 m 15.00 m 90 ⁹ M= 492686,452	P= 428759	94.14
DE FURAÇÃO: 0.00-0.80m=200mm 0.80-15.00m=113mm FERRAMENTA DO PIEZÓMETRO:	A: 0.00-0.80m=Trado od 0.80-15,00m=101-T2			EQUIPAMENTO: Musta		IO: 06-03	
Perfil esquemático Preenchimento do do piezómetro espaço anelar	COV Head Space (ppm)	Amostras Intactas	Simbologia	Descriçã	ão Litológica	Estrationalia	Nicol do Ácum
-			× × ×	basalto: Tufo-brecho	hóide alterado.		<u> </u>
			\(\nabla \) \(\nab	Argila arenosa, rija, acastanhada, com fi basalto: Tufo-brecho	ragmentos líticos óide alterado.	e de	
			×	medianamente atei	aut.		
Fundações e Geotecnia Travessa das Lages, 224 Telef.: 22 716 93 00 Zona Industrial de S. Caetano Fax: 22 716 93 02 4405 - 194 Canelas VNG e-mail: geotecnia@mota-engil.pt	Observações: Entre os 4,50 e os Não foi observado				FEITO POR: VERIFICADO POR: REQUERENTE/ FISCALIZAÇÃO:	Olato S.	

 S_{2A}

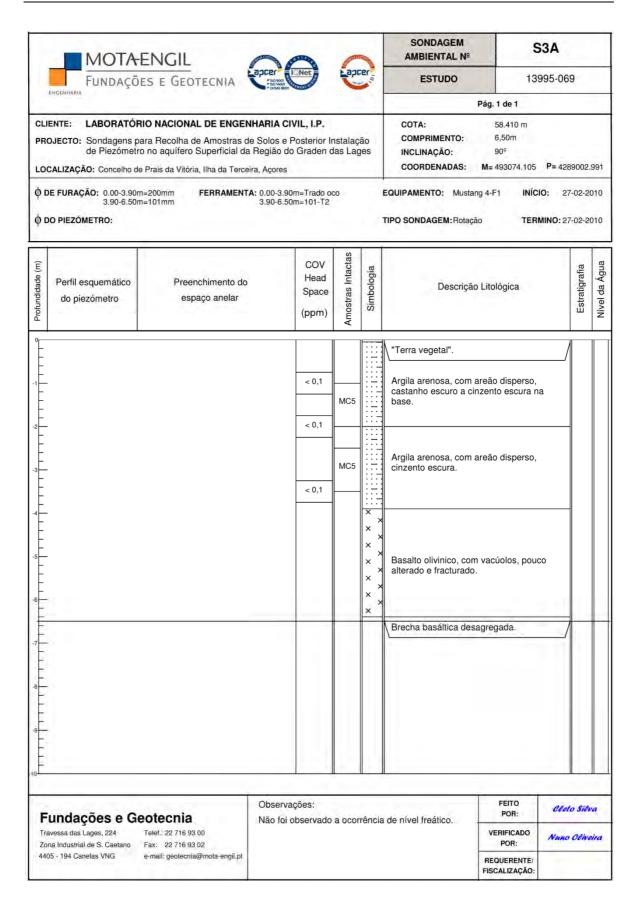
2,80 m - 6,30 m



6,30 m - 9,30 m

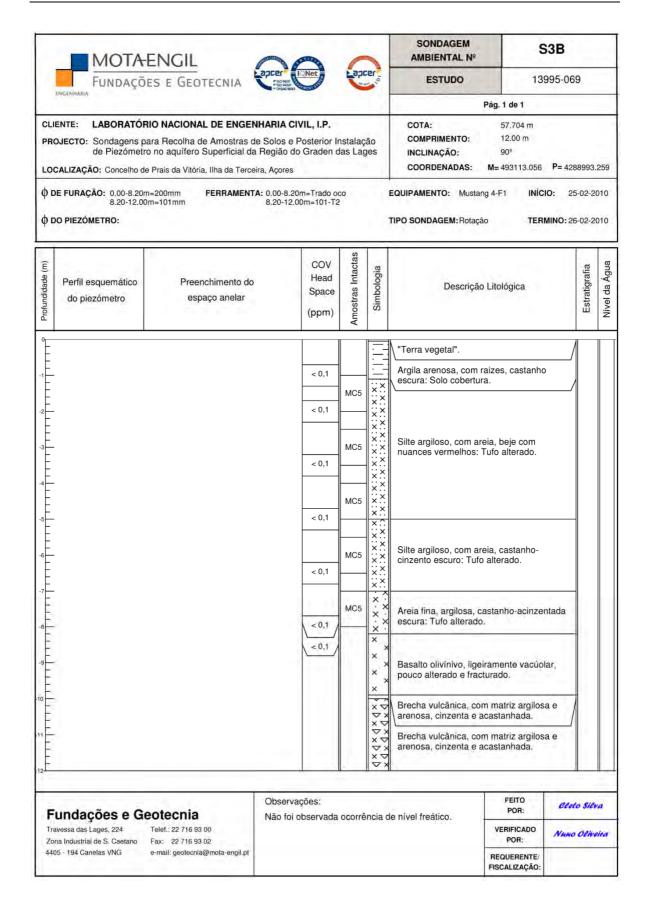

 $S_{2\text{A}}$

9,30 m - 15,00 m

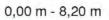

150

 S_{2B}

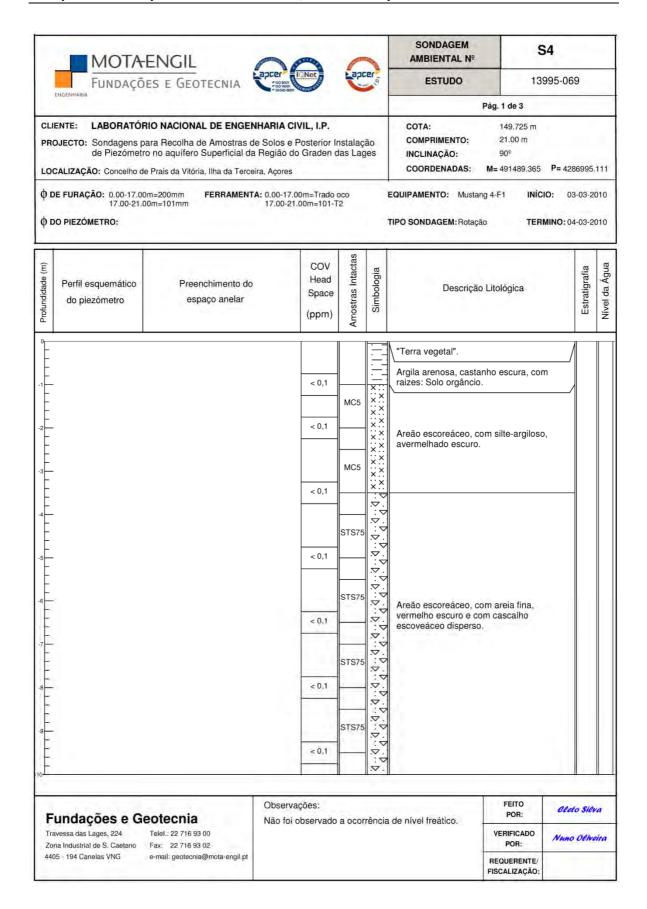
5,80 m - 12,00 m

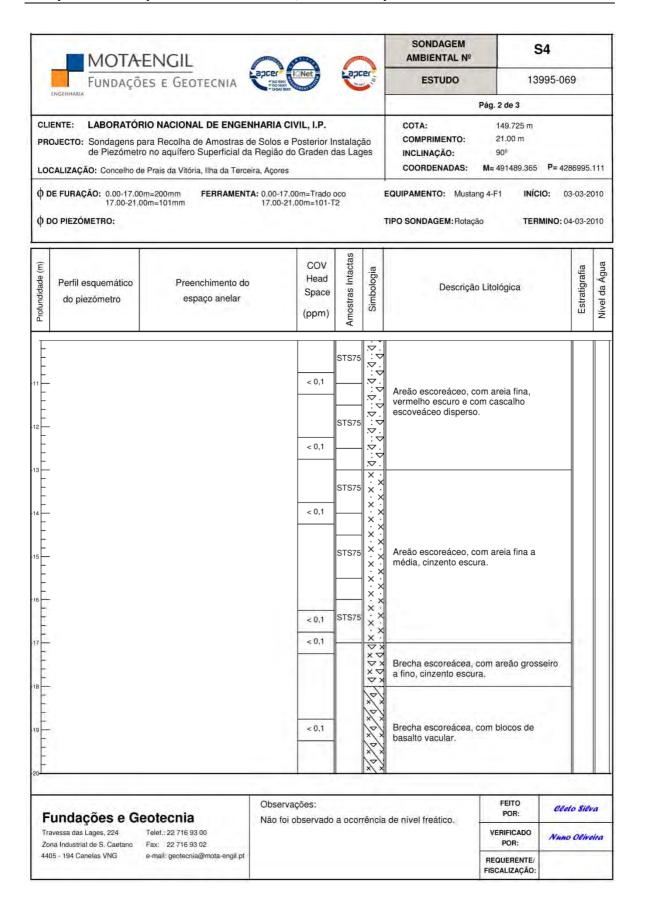

 S_{3A}

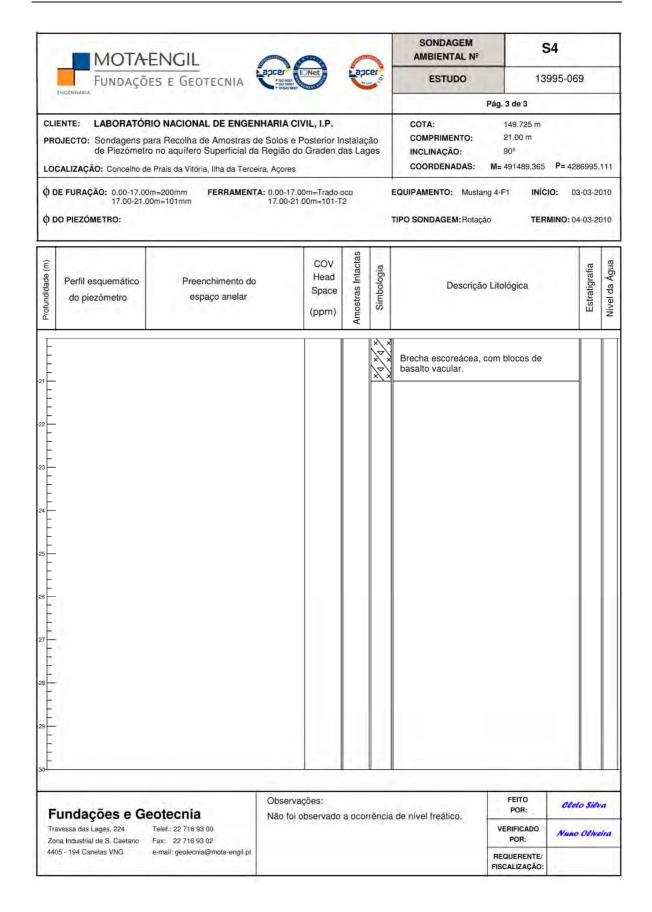
0,00 m - 3,90 m

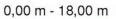


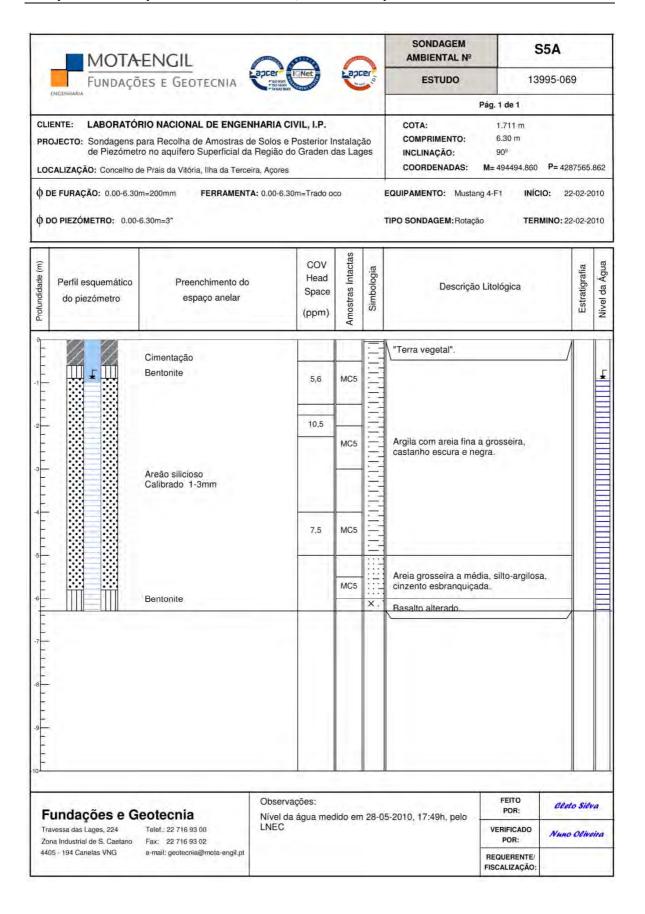
3,90 m - 6,50 m

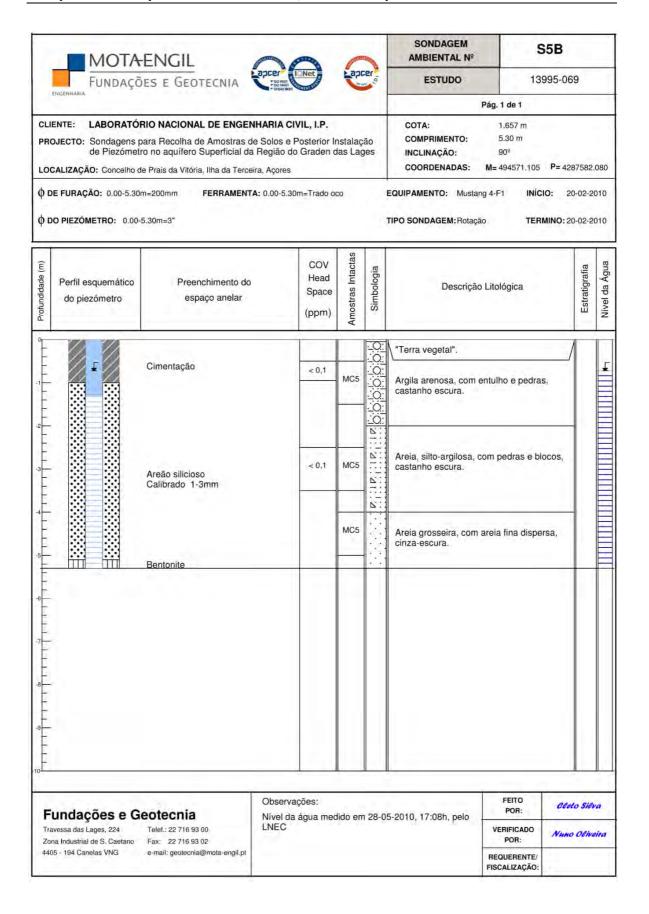

SEM REGISTO

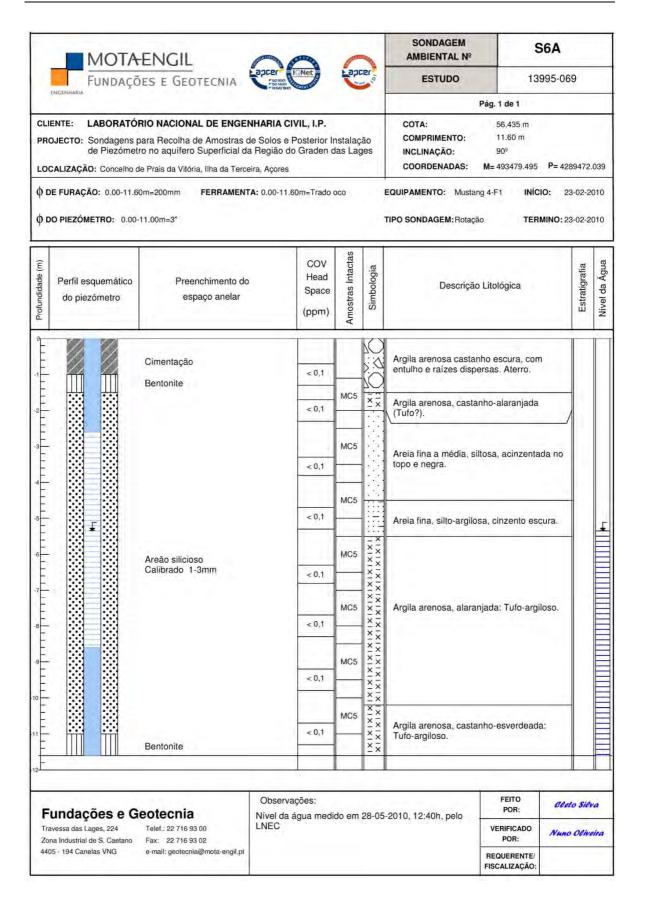

S_{3B}

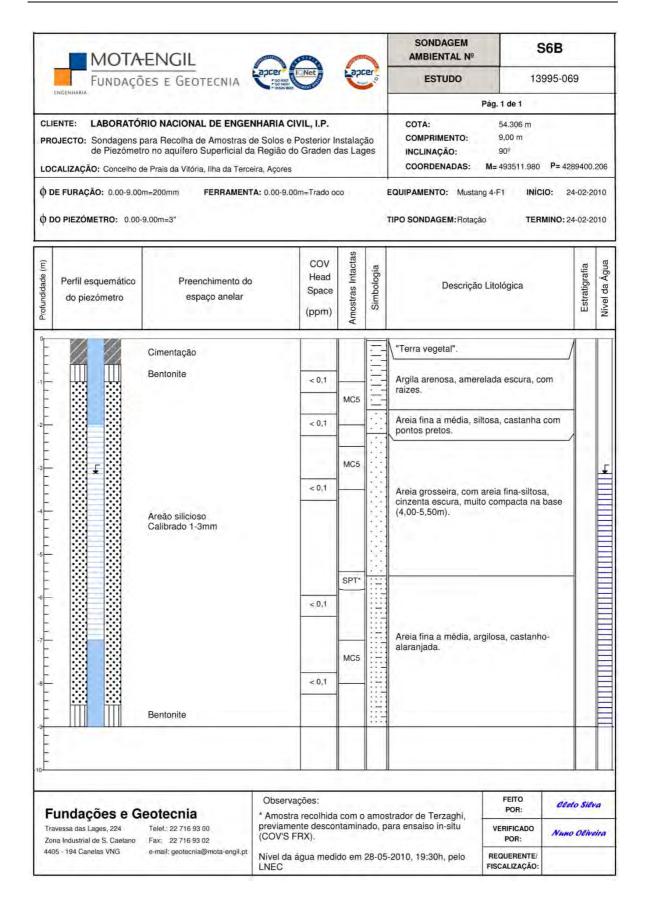


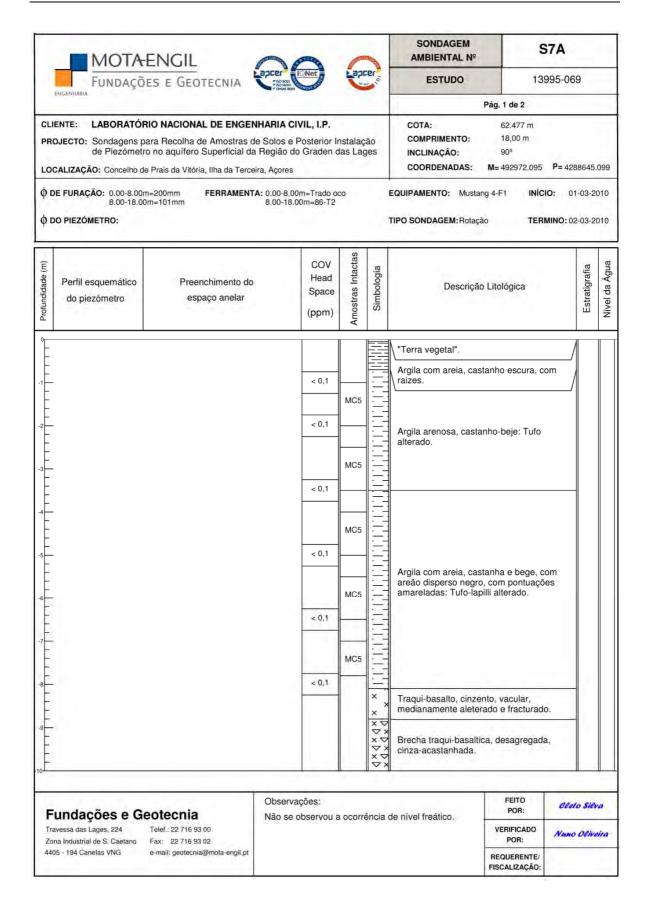

8,20 m - 12,00 m



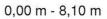

 S_4

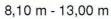



18,00 m - 21,00 m



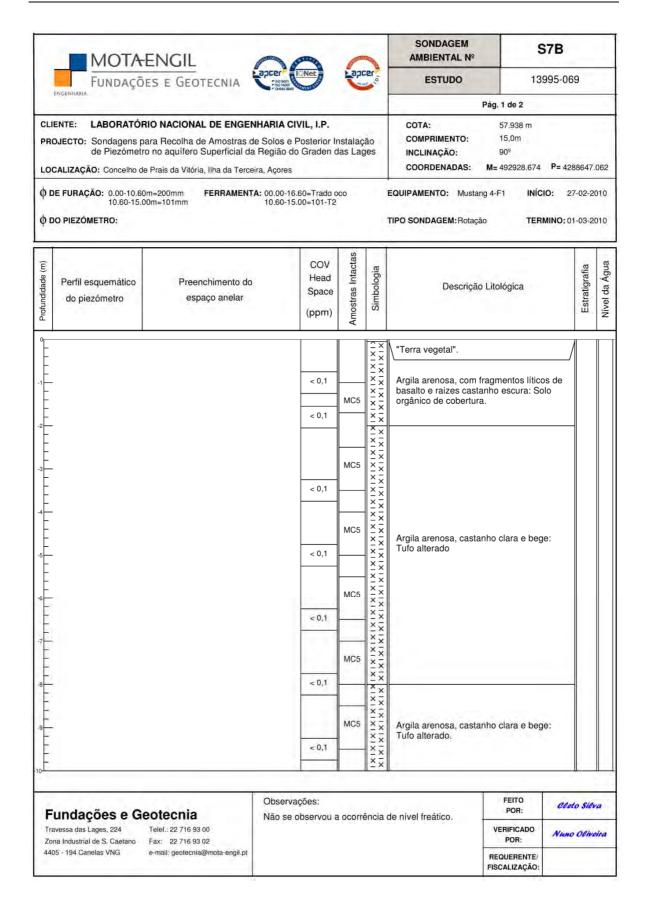
107

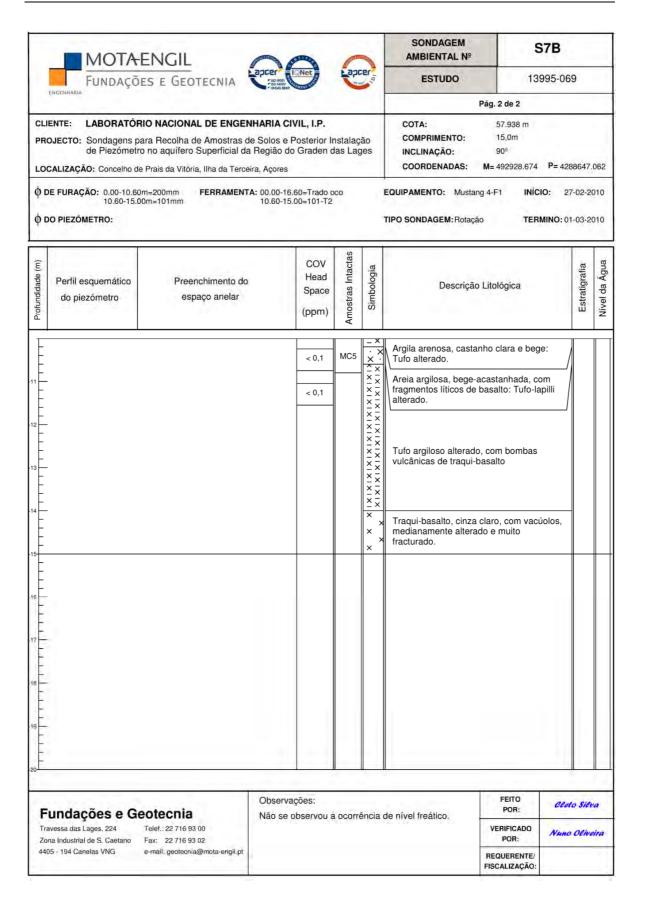




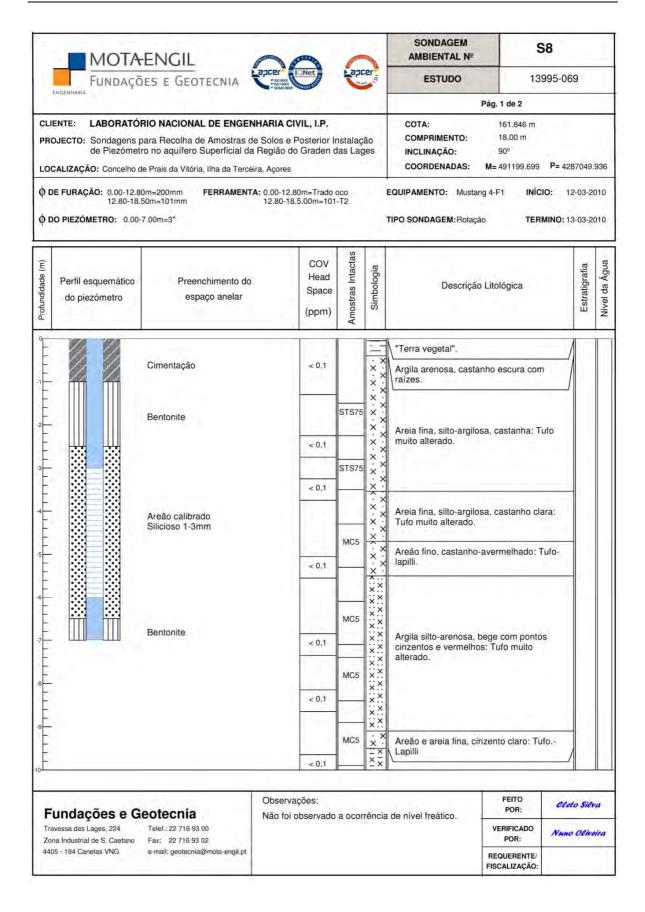
	MOTAE	NGIL #		(Control of the Cont	THE REAL PROPERTY.	SONDAGEM AMBIENTAL Nº	S	7A	
ı	Fundações	E GEOTECNIA	SO 16001	920	er la	ESTUDO	139	995-069	
Æ	NGENHARIA						Pág. 2 de 2		
RO OC	DJECTO: Sondagens para de Piezómetro n ALIZAÇÃO: Concelho de P	NACIONAL DE ENGENH a Recolha de Amostras de s to aquífero Superficial da R rais da Vitória, Ilha da Terceira	Solos e Posterior Ir egião do Graden d , Açores	las Lag	jes	COTA: COMPRIMENTO: INCLINAÇÃO: COORDENADAS:		P= 428864	
	E FURAÇÃO: 0.00-8.00m=2 8.00-18.00m= O PIEZÓMETRO:	200mm FERRAMENTA: =101mm	0.00-8.00m=Trado od 8.00-18.00m=86-T2	co		EQUIPAMENTO: Mustar	2 PA 1 - 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	O: 01-03-	
	Perfil esquemático do piezómetro	Preenchimento do espaço anelar	COV Head Space (ppm)	Amostras Intactas	Simbologia	Descrição	Litológica	Estratigrafia	No. of Assessment
-					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Brecha traqui-basalti cinza-acastanhada.	ca, desagregada	à,	
					× × ×	Traqui-basalto, cinze medianamente altera	nto claro, vacula do e fracturado.	ar,	
-					\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Brecha traqui-basalti cinzenta e acastanha		ì,	
					× × × × × ×	Traqui-basalto, cinze medianamente altera		s,	
_			Observacione				FEITO	7.0	
	undações e Geo vessa das Lages, 224 Te		Observações: Não se observou a	ocorré	ència (de nivel freático.	POR: VERIFICADO	Plato Si	
		ax: 22 716 93 02 mail: geotecnia@mota-engil.pt					POR: REQUERENTE/ FISCALIZAÇÃO:		

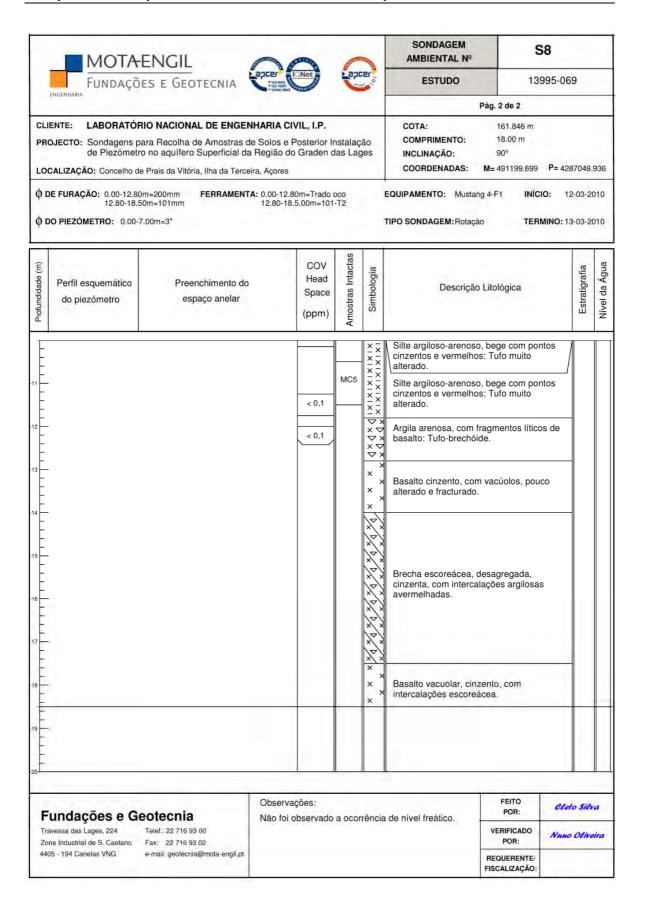
S_{7A}





13,00 m - 18,00 m




S_{7B}



10,60 m - 15,00 m

S8

13,20 m - 17,00 m

17,00 m - 18,50 m

٨	valiacão a	ام ر	Contominação	da Calaa	Droip do	\/itária	Ilha Terceira -	A coroo
н	vallacao d	ıa c	Jontaminacao	ae Solos –	Praia da	vitoria.	iina Terceira –	Acores

ANEXO 3 – Resultados dos Ensaios Multi-PID e FRX Legenda - RESULTADOS DOS ENSAIOS MULTI-PID E FRX

LEGENDA:

- (*) Nos casos em que a amostra foi obtida por corte do liner, apresenta-se o intervalo de profundidades correspondente. Nos casos em que a amostra foi obtida a partir da ponta do liner, apresentam-se apenas as profundidades a que se referem.
- (**) Resultados apresentados em base nao seca. Medições realizadas sobre amostras com o teor em água original quando em células de côr clara, e obtidos a partir de amostras secas quando em células escuras.
- (***) A quantificação em headspace só foi possível depois de cerca de 24 horas apos amostragem procedimento normalizado aconselha periodos de equilibrio compreendidos entre 15 minutos e 4 horas.
- (****) As amostras obtidas nos trados poderao conter solo desde a superficie ate a profundidade apresentada.
- (*****) Standard penetration test (teste de penetracao padrao).

- amostras analisadas nas condições da amostragem.
- amostras analisadas após secagem pela MOTA-ENGIL (marcação apenas das células dos pontos de amostragem, dos resultados inferiores aos limites de quantificação, e das células de incertezas).
- resultados relevantes (superiores aos limites de quantificação) obtidos para as amostras analisadas nas condições da amostragem.
- resultados relevantes (superiores aos limites de quantificação) obtidos para amostras analisadas após secagem pela MOTA-ENGIL.
- incertezas associadas a resultados relevantes obtidos para amostras analisadas nas condições da amostragem.
- incertezas associadas a resultados relevantes obtidos para amostras analisadas após secagem pela MOTA-ENGIL.
- resultado aberrante (inesperado)
- incerteza associada ao resultado aberrante.

Sondagens S1A e S1B - RESULTADOS DOS ENSAIOS MULTI-PID E FRX

Incerteza = LD (limite de deteccao) = 2*desvio padrao das leituras efectuadas. Limites de quantificacao (LQ) = 6*desvio padrao das leituras efectadas. Para conhecer resultados vestigiais (<LQ mas >LD) consultar o ficheiro "Terceira"

DATA (da analise)	Ponto de Sondagem	Profundidade* (m)	VOC (ppm de isobutileno)	Tipo de amostragem	Mo (mg/kg**)	Mo - incerteza (mg/kg**)	Zr (mg/kg**)	Zr - incerteza (mg/kg**)	Sr (mg/kg**)	Sr - incerteza (mg/kg**)	U (mg/kg**)	U - incerteza (mg/kg**)	Rb (mg/kg**)	Rb - incerteza (mg/kg**)	Th (mg/kg**)	Th - incerteza (mg/kg**)
20/04/2010	S1A	0-1	<0,1	Trado****	< 27	-	737	21	343	13	< 48	-	29	5	< 24	-
20/04/2010	S1A	14.8	<0,1	101-T2	< 28	-	1077	23	221	11	< 47	-	41	6	< 25	-
20/04/2010	S1A	15	<0,1	Liner STS75	< 36	-	1957	33	94	8	< 51	-	43	6	34	10
20/04/2010	S1A	17	<0,1	Liner MC5	< 33	-	1818	31	78	7	< 42	-	33	6	34	10
20/04/2010	S1B	1.7	<0,1	Liner MC5	< 31	-	1034	25	172	10	< 49	-	21	5	< 27	-

Pb (mg/kg**)	Pb - incerteza (mg/kg**)	Se (mg/kg**)	Se - incerteza (mg/kg**)	As (mg/kg**)	As - incerteza (mg/kg**)	Hg (mg/kg**)	Hg - incerteza (mg/kg**)	Zn (mg/kg**)	Zn - incerteza (mg/kg**)	W (mg/kg**)	W - incerteza (mg/kg**)	Cu (mg/kg**)	Cu - incerteza (mg/kg**)	Ni (mg/kg**)	Ni - incerteza (mg/kg**)	Co (mg/kg**)	Co - incerteza (mg/kg**)
< 33	-	< 20	-	< 34	-	< 46	-	263	30	< 298	-	< 85	-	< 277	-	< 1270	-
< 37	-	< 20	-	< 32	-	< 45	-	269	29	< 289	-	104	28	< 258	-	< 1180	-
< 39	-	< 21	-	< 39	-	< 50	-	373	36	< 314	-	< 86	-	< 285	-	< 1160	-
< 37	-	< 23	-	< 37	-	< 50	-	284	31	< 334	-	< 108	-	< 266	-	< 1050	-
< 39	-	< 23	-	< 38	-	< 55	-	201	29	< 311	-	< 90	-	< 321	-	< 1370	-

Fe (mg/kg**)	Fe - incerteza (mg/kg**)	Mn (mg/kg**)	Mn - incerteza (mg/kg**)	Cr (mg/kg**)	Cr - incerteza (mg/kg**)	V (mg/kg**)	V - incerteza (mg/kg**)	Ti (mg/kg**)	Ti - incerteza (mg/kg**)	Sc (mg/kg**)	Sc - incerteza (mg/kg**)	Ca (mg/kg**)	(mg/kg**)	K (mg/kg**)	K - incerteza (mg/kg**)	S (mg/kg**)	S - incerteza (mg/kg**)
91900	910	2540	210	< 139	-	< 400	-	8090	260	< 123	-	11300	370	3420	350	< 59800	-
85100	850	2270	200	< 145	-	< 370	-	8770	270	< 93	-	3870	240	4430	380	< 54800	-
86900	920	1110	170	< 142	-	< 310	-	3480	190	< 56	-	980	160	4560	380	< 49200	-
63600	760	1920	190	< 132	-	< 360	-	3980	200	< 64	-	800	150	5460	410	< 49000	-
119300	1100	2350	230	< 141	-	< 400	-	11800	300	< 63	-	2160	190	< 720	-	< 51100	-

Ba (mg/kg**)	Ba - incerteza (mg/kg**)	Cs (mg/kg**)	Cs - incerteza (mg/kg**)	Te (mg/kg**)	Te - incerteza (mg/kg**)	Sb (mg/kg**)	Sb - incerteza (mg/kg**)	Sn (mg/kg**)	Sn - incerteza (mg/kg**)	Cd (mg/kg**)	Cd - incerteza (mg/kg**)	Ag (mg/kg**)	Ag - incerteza (mg/kg**)	Pd (mg/kg**)	Pd - incerteza (mg/kg**)
260	59	< 65	-	< 200	-	< 71	-	< 63	-	< 53	-	< 37	-	< 59	-
< 153	-	< 56	-	< 172	-	< 61	-	< 54	-	< 46	-	< 32	-	< 51	-
< 230	-	< 57	-	< 174	-	< 61	-	< 54	-	< 46	-	< 33	-	< 49	-
< 230	-	< 59	-	< 178	-	< 63	-	< 55	-	< 47	-	< 32	-	< 50	-
230	61	< 68	-	< 208	-	< 74	-	< 65	-	< 57	-	< 39	-	< 61	-

Sondagens S2A e S2B - RESULTADOS DOS ENSAIOS MULTI-PID E FRX

	DATA (da analise)	Ponto de Sondagem	Profundidade* (m)	VOC (ppm de isobutileno)	Tipo de amostragem	Mo (mg/kg**)	Mo - incerteza (mg/kg**)	Zr (mg/kg**)	Zr - incerteza (mg/kg**)	Sr (mg/kg**)	Sr - incerteza (mg/kg**)	U (mg/kg**)	U - incerteza (mg/kg**)	Rb (mg/kg**)	Rb - incerteza (mg/kg**)	Th (mg/kg**)	Th - incerteza (mg/kg**)
	20/04/2010 20/04/2010 20/04/2010	S2A S2A S2A	5.2 6.8 8.9	<0,1 <0,1 <0,1	Liner STS75 Liner MC5 Liner MC5	< 27 < 29 < 28	- - -	1211 1392 1104	23 25 23	68 69 55	6 6 6	< 43 < 45 < 50	- - -	53 52 62	6 6 7	< 23 < 24 < 24	- - -
	20/04/2010 20/04/2010 20/04/2010 20/04/2010	S2B S2B S2B S2B	0-1 1.5 7.4 9.4	<0,1 <0,1 <0,1 <0,1	Trado**** Liner STS75 Liner STS75 Liner STS75	< 26 < 24 < 28 < 26	· ·	394 251 1376 728	17 15 24 20	481 542 46 228	16 17 5 11	< 45 < 45 < 40 < 48		< 16 < 14 35 39	- - 5 6	< 32 < 33 < 23 < 27	
Pb (mg/kg**)	Pb - incerteza (mg/kg**)	Se (mg/kg**)	Se - incerteza (mg/kg**)	As (mg/kg**)	As - incerteza (mg/kg**)	Hg (mg/kg**)	Hg - incerteza (mg/kg**)	Zn (mg/kg**)	Zn - incerteza (mg/kg**)	W (mg/kg**)	W - incerteza (mg/kg**)	Cu (mg/kg**)	Cu - incerteza (mg/kg**)	Ni (mg/kg**)	Ni - incerteza (mg/kg**)	Co (mg/kg**)	Co - incerteza (mg/kg**)
< 32 < 33 < 31		< 18 < 19 < 20	- - -	< 31 < 32 < 33	-	< 39 < 42 < 46	-	155 222 279	21 25 29	< 252 < 275 < 305	-	< 73 < 78 < 86	-	< 213 < 232 < 257	-	< 860 < 1020 < 1140	-
< 38 < 40 < 35 < 38	:	< 23 < 22 < 17 < 21	:	< 33 < 32 < 31 < 33		< 52 < 53 < 38 < 46	- - - -	193 171 194 265	28 26 23 29	< 347 < 319 < 247 < 308	- - -	< 106 < 94 < 80 < 90	- - - -	< 267 < 293 < 214 < 262	- - - -	< 1140 < 1200 < 890 < 990	- - - -
Fe (mg/kg**)	Fe - incerteza (mg/kg**)	Mn (mg/kg**)	Mn - incerteza (mg/kg**)	Cr (mg/kg**)	Cr - incerteza (mg/kg**)	V (mg/kg**)	V - incerteza (mg/kg**)	Ti (mg/kg**)	Ti - incerteza (mg/kg**)	Sc (mg/kg**)	Sc - incerteza (mg/kg**)	Ca (mg/kg**)	Ca - incerteza (mg/kg**)	K (mg/kg**)	K - incerteza (mg/kg**)	S (mg/kg**)	S - incerteza (mg/kg**)
52300 69100 79400	620 740 830	1990 1970 2900	170 180 220	< 147 < 146 < 148	:	< 330 < 440 < 470	- - -	4720 7760 8940	210 250 270	< 66 < 67 < 76		780 980 1030	170 160 160	8820 5460 3950	490 410 370	< 48700 < 53000 < 52900	
86600 76900 55600 71000	930 860 640 800	1620 1380 2440 2290	190 170 180 200	< 141 < 130 < 144 < 145	- - -	< 400 < 460 < 320 < 280	- - -	8970 9320 4260 6200	260 270 200 230	142 < 135 < 59 < 86	37 - - -	15900 26500 450 4140	430 550 150 250	< 930 1370 6760 7100	290 440 450	< 55200 < 62100 < 48100 < 53800	

Ba (mg/kg**)	Ba - incerteza (mg/kg**)	Cs (mg/kg**)	Cs - incerteza (mg/kg**)	Te (mg/kg**)	Te - incerteza (mg/kg**)	Sb (mg/kg**)	Sb - incerteza (mg/kg**)	Sn (mg/kg**)	Sn - incerteza (mg/kg**)	Cd (mg/kg**)	Cd - incerteza (mg/kg**)	Ag (mg/kg**)	Ag - incerteza (mg/kg**)	Pd (mg/kg**)	Pd - incerteza (mg/kg**)
< 165	-	< 53	-	< 162	-	< 57	-	< 50	-	< 43	-	< 30	-	< 47	-
< 197	-	< 56	-	< 170	-	< 60	-	< 54	-	< 46	-	< 32	-	< 49	-
194	56	< 62	-	< 189	-	< 67	-	< 60	-	< 51	-	< 35	-	< 54	-
435	74	< 71	-	< 249	-	< 90	-	< 78	-	< 67	-	< 49	-	< 73	-
525	74	< 63	-	< 249	-	< 88	-	< 79	-	< 67	-	< 47	-	< 75	-
< 188	•	< 48	-	< 146	-	< 52	-	< 45	-	< 39	-	< 27	-	< 43	-
340	61	< 65	-	< 204	-	< 72	-	< 65	-	< 54	-	< 39	-	< 60	-

Sondagens S3A e S3B - RESULTADOS DOS ENSAIOS MULTI-PID E FRX

DATA (da analise)	Ponto de Sondagem	Profundidade* (m)	VOC (ppm de isobutileno)	Tipo de amostragem	Mo (mg/kg**)	Mo - incerteza (mg/kg**)	Zr (mg/kg**)	Zr - incerteza (mg/kg**)	Sr (mg/kg**)	Sr - incerteza (mg/kg**)	U (mg/kg**)	U - incerteza (mg/kg**)	Rb (mg/kg**)	Rb - incerteza (mg/kg**)	Th (mg/kg**)	Th - incerteza (mg/kg**)
27/02/2010	S3 A	1	<0,1	Trado****	<27	-	1250	23	100	7	<40	-	41	5	<22	-
26/04/2010	S3 A	1	<0,1	Trado****	< 29		1530	30	130	9	< 49		48	6	29	9
27/02/2010	S3 A	2	<0,1	Liner MC5	<24	-	519	16	73	6	<36	-	7	4	<23	-
26/04/2010	S3 A	2	<0,1	Liner MC5	< 30		779	22	108	9	< 42		< 14	-	< 32	
27/02/2010	S3 A	3,5	<0,1	Liner MC5	<20	-	286	12	115	7	<35	-	16	4	<24	-
26/04/2010	S3 A	3,5	<0,1	Liner MC5	< 25		406	16	172	10	< 43		25	5	< 31	
25/02/2010	S3 B	. 1	<0,1	Trado****	<30	-	1759	27	106	7	<40	-	31	5	26	8
26/04/2010	S3 B	1	<0,1	Trado****	< 36		2130	30	135	9	< 45		40	6	36	10
25/02/2010	S3 B	2	<0,1	Liner MC5	<21	-	282	12	50	5	<32	-	12	4	<22	-
27/04/2010	S3 B	2	<0,1	Liner MC5	< 26		392	16	68	7	< 42		16	5	< 26	-
25/02/2010	S3 B	3,5	<0,1	Liner MC5	<19	-	211	10	19	4	<29	-	<9	-	<23	-
27/04/2010	S3 B	3,5	<0,1	Liner MC5	< 26		315	15	30	5	< 42		13	4	< 31	-
25/02/2010	S3 B	5	<0,1	Liner MC5	<27	-	1289	23	30	4	<38	-	<14	-	<23	-
27/04/2010	S3 B	5	<0,1	Liner MC5	< 35		1688	31	72	7	< 49		48	7	< 29	-
25/02/2010	S3 B	6,5	<0,1	Liner MC5	<21	-	306	13	78	6	<33	-	<11	-	<26	-
27/04/2010	S3 B	6,5	<0,1	Liner MC5	< 25		403	16	97	8	< 38		< 12	-	< 32	-
25/02/2010	S3 B	8	<0,1	Liner MC5	<21	-	230	12	172	9	<38	-	19	4	<27	-
27/04/2010	S3 B	8	<0,1	Liner MC5	< 25	-	342	16	262	13	< 48	-	23	5	< 28	-
27/04/2010	S3 B	8.2	<0,1	Liner MC5	< 25	-	339	16	325	14	< 46	-	27	5	< 35	-

Pb (mg/kg**)	Pb - incerteza (mg/kg**)	Se (mg/kg**)	Se - incerteza (mg/kg**)	As (mg/kg**)	As - incerteza (mg/kg**)	Hg (mg/kg**)	Hg - incerteza (mg/kg**)	Zn (mg/kg**)	Zn - incerteza (mg/kg**)	W (mg/kg**)	W - incerteza (mg/kg**)	Cu (mg/kg**)	Cu - incerteza (mg/kg**)	Ni (mg/kg**)	Ni - incerteza (mg/kg**)	Co (mg/kg**)	Co - incerteza (mg/kg**)
<31	-	<17	-	<30	-	<38	-	300	28	<244	-	<67	-	<195	-	<820	-
< 43		< 22		< 37		< 49		399	36	< 316		< 82		< 267		< 1020	
<34	-	<19	-	<28	-	<40	-	257	28	<266	-	<79	-	<251	-	550	280
< 41		< 25		< 35		< 52		346	36	< 361		< 92		< 332		< 1510	
<32	-	<18	-	<26	-	<37	-	108	19	<244	-	<73	-	<219	-	<810	-
< 39		< 23		< 32		< 50		190	27	< 337		< 84		< 295		< 1230	
<36	-	<16	-	<27	-	<35	-	213	24	<222	-	<86	-	<181	-	<710	-
< 32		< 23		< 40		< 45		280	30	< 308		< 96		< 249		< 1000	
<32	-	<16	-	<25	-	<36	-	207	24	<237	-	<72	-	<235	-	<760	-
< 38	•	< 22	-	< 31	-	< 51	-	325	34	< 340	-	< 106	-	< 274	-	< 1550	-
<28	-	<14	-	<23	-	<32	-	121	18	<206	-	<58	-	<202	-	<730	-
< 37	-	< 23	-	< 33	-	< 54	-	214	29	< 373	-	< 131	-	< 321	-	< 1080	-
<31	-	<16	-	<30	-	<35	-	172	22	<225	-	<85	-	<198	-	<880	-
< 35	-	< 23	-	< 36	-	< 52	-	292	33	< 334	-	< 96	-	< 259	-	< 1270	-
<31	-	<17	-	<26	-	<38	-	198	24	<253	-	<66	-	<242	-	<1220	-
< 38	-	< 22	-	< 31	-	< 48	-	270	31	< 328	-	< 85	-	< 302	-	< 1270	-
<32	-	<18	-	<26	-	<41	-	161	22	<266	-	<79	-	<232	-	<710	-
< 38	-	< 22	-	< 30	-	< 51	-	216	29	< 330	-	< 88	-	< 308	-	< 1190	-
< 39	-	< 20	-	< 32	-	< 50	-	166	26	< 324	-	< 83	-	< 293	-	< 1450	-

Sondagens S3A e S3B - RESULTADOS DOS ENSAIOS MULTI-PID E FRX

Fe (mg/kg**)	Fe - incerteza (mg/kg**)	Mn (mg/kg**)	Mn - incerteza (mg/kg**)	Cr (mg/kg**)	Cr - incerteza (mg/kg**)	V (mg/kg**)	V - incerteza (mg/kg**)	Ti (mg/kg**)	Ti - incerteza (mg/kg**)	Sc (mg/kg**)	Sc - incerteza (mg/kg**)	Ca (mg/kg**)	Ca - incerteza (mg/kg**)	K (mg/kg**)	K - incerteza (mg/kg**)	S (mg/kg**)	S - incerteza (mg/kg**)
47700	590	2190	170	<151	-	<390	-	4660	220	<82	-	1720	200	7030	450	<55700	-
61200	760	3140	230	< 149		< 340		4560	210	< 78	-	2080	200	7770	470	< 55200	-
99400	900	1450	170	<140	-	<390	-	13900	340	<69	-	330	160	<950	-	<56400	-
154100	1300	2170	230	< 136		< 390		15100	340	< 69	-	453	130	< 923	-	< 53100	-
73900	740	1030	140	<140	-	<470	-	12100	310	<117	-	6720	300	2700	330	<53300	-
114400	1100	1970	210	< 137		< 460		12500	310	75	28	7120	300	3540	350	< 57300	-
44700	570	1780	160	<154	-	<360	-	3490	200	<68	-	930	160	3900	360	<45400	-
57500	730	1950	190	< 130		< 340		3140	180	92	20	1180	160	4340	370	< 50100	-
85300	810	800	130	<153	-	<600	-	15800	360	<83	-	1040	170	<869	-	<54800	-
126600	1110	1470	190	< 134	-	< 550	-	13590	330	< 73	-	1110	150	< 850	-	< 50700	-
63700	650	1000	130	<147	-	<520	-	12200	310	<67	-	<460	-	<725	-	<52100	-
95900	990	1560	190	< 146	-	< 540	-	13810	320	165	24	720	140	< 880	-	< 51300	-
56000	640	1310	140	<151	-	<300	-	6870	250	<64	-	<570	-	3260	340	<51600	-
105000	1030	2870	240	< 143	-	< 390	-	6950	250	< 67	-	500	140	4120	370	< 50000	-
96200	870	1070	150	<145	-	<470	-	16200	360	<71	-	<570	-	<992	-	<55500	-
141600	1170	2660	230	< 133	-	< 450	-	14960	340	< 66	-	< 460	-	< 810	-	< 50800	-
73200	760	1160	140	<145	-	<400	-	10900	290	<111	-	7950	320	2350	310	<52600	-
119700	1100	1980	210	< 136	-	< 400	-	12400	300	< 103	-	9410	340	3010	340	< 54600	-
111100	1050	2320	220	< 134	-	< 350	-	11760	300	< 141	-	11600	380	3320	350	< 55800	-

Ba (mg/kg**)	Ba - incerteza (mg/kg**)	Cs (mg/kg**)	Cs - incerteza (mg/kg**)	Te (mg/kg**)	Te - incerteza (mg/kg**)	Sb (mg/kg**)	Sb - incerteza (mg/kg**)	Sn (mg/kg**)	Sn - incerteza (mg/kg**)	Cd (mg/kg**)	Cd - incerteza (mg/kg**)	Ag (mg/kg**)	Ag - incerteza (mg/kg**)	Pd (mg/kg**)	Pd - incerteza (mg/kg**)
115	48	<47	-	<143	-	<50	-	<45	-	<38	-	<26	-	<40	-
< 167	-	< 62	-	< 189	-	< 67	-	< 58	-	< 50	-	< 34	-	< 53	-
218	56	<55	-	<168	-	<60	-	<53	-	<45	-	<31	-	<50	-
321	68	< 75	-	< 229	-	< 82	-	< 73	-	< 63	-	< 44	-	< 69	-
320	51	<56	-	<173	-	<62	-	<55	-	<46	-	<32	-	<51	-
453	70	< 76	-	< 237	-	< 84	-	< 75	-	< 65	-	< 47	-	< 70	-
<174	-	<44	-	<131	-	<46	-	<41	-	<35	-	<24	-	<38	-
< 182		< 59	-	< 181	-	< 64	-	< 56	-	< 48	-	< 33	-	< 51	-
255	49	<54	-	<164	-	<59	-	<52	-	<45	-	<30	-	<50	-
402	66	< 71	-	< 218	-	< 77	-	< 68	-	< 58	-	< 41	-	< 63	-
164	46	<51	-	<156	-	<56	-	<49	-	<42	-	<29	-	<46	-
383	78	< 85	-	< 266	-	< 94	-	< 81	-	< 71	-	< 52	-	< 75	-
<174	-	<44	-	<133	-	<47	-	<42	-	<36	-	<24	-	<39	-
< 236	-	< 59	-	< 177	-	< 62	-	< 55	-	< 46	-	< 33	-	< 51	-
204	50	<55	-	<170	-	<60	-	<54	-	<46	-	<31	-	<50	-
279	61	< 67	-	< 206	-	< 73	-	< 65	-	< 55	-	< 38	-	< 60	-
390	62	<59	-	<181	-	<64	-	<57	-	<48	-	<33	-	<53	-
334	67	< 73	-	< 224	-	< 80	-	< 72	-	< 61	-	< 43	-	< 66	-
393	63	< 69	-	< 208	-	< 76	-	< 67	-	< 56	-	< 40	-	< 63	-

Sondagem S4 - RESULTADOS DOS ENSAIOS MULTI-PID E FRX

DATA (da analise)	Ponto de Sondagem	Profundidade* (m)	VOC (ppm de isobutileno)	Tipo de amostragem	Mo (mg/kg**)	Mo - incerteza (mg/kg**)	Zr (mg/kg**)	Zr - incerteza (mg/kg**)	Sr (mg/kg**)	Sr - incerteza (mg/kg**)	U (mg/kg**)	U - incerteza (mg/kg**)	Rb (mg/kg**)	Rb - incerteza (mg/kg**)	Th (mg/kg**)	Th - incerteza (mg/kg**)
03/03/2010	S4	1	<0,1	Trado****	< 20	-	344	12	84	6	< 31	-	6	3	< 24	-
20/04/2010	S4	1	<0,1	Trado****	< 25	-	467	17	186	10	< 42	-	< 13	-	< 31	-
03/03/2010	S4	2	<0,1	Liner MC5	< 19	-	170	10	133	8	< 31	-	9	3	< 24	-
20/04/2010	S4	2	<0,1	Liner MC5	< 24	-	307	14	221	11	< 42	-	17	5	< 29	-
03/03/2010	S4	3.5	<0,1	Liner MC5	< 20	-	168	11	378	13	< 39	-	13	4	< 25	-
20/04/2010	S4	3.5	<0,1	Liner MC5	< 24	-	234	14	547	17	< 49	-	18	5	< 29	-
03/03/2010	S4	5	<0,1	Liner STS75	< 21	-	177	12	422	14	< 40	-	13	4	< 27	-
20/04/2010	S4	5	<0,1	Liner STS75	< 24	-	241	15	578	18	< 48	-	18	5	< 33	-
03/03/2010	S4	6.5	<0,1	Liner STS75	< 21	-	184	12	437	14	< 41	-	11	4	< 25	-
20/04/2010	S4	6.5	<0,1	Liner STS75	< 24	-	224	14	531	17	< 49	-	< 13	-	< 29	-
03/03/2010	S4	. 8	<0,1	Liner STS75	< 21	-	171	12	417	14	< 41	-	13	4	< 28	-
20/04/2010	S4	8	<0,1	Liner STS75	< 24	-	225	14	536	17	< 49	-	16	5	< 30	-
03/03/2010	S4	9.5	<0,1	Liner STS75	< 20	-	168	11	359	13	< 40	-	14	4	< 26	-
26/04/2010	S4	9.5	<0,1	Liner STS75	< 21		229	14	494	16	< 48		18	5	< 27	
03/03/2010	S4	. 11	<0,1	Liner STS75	< 19	-	152	10	302	11	< 38	-	13	4	< 25	-
26/04/2010	S4	11	<0,1	Liner STS75	< 25		228	15	434	16	< 50		20	5	< 35	
03/03/2010	S4	12.5	<0,1	Liner STS75	< 20	-	161	11	320	12	< 39	-	13	4	< 26	-
26/04/2010	S4	12.5	<0,1	Liner STS75	< 25		233	14	461	16	< 51		21	5	< 26	
03/03/2010	S4	14	<0,1	Liner STS75	< 19	-	161	10	337	12	< 38	-	17	4	< 25	-
26/04/2010	S4	14	<0,1	Liner STS75	< 25		236	14	474	16	< 50		24	5	< 30	
03/03/2010	S4	16.5	<0,1	Liner STS75	< 19	-	146	10	305	11	< 38	-	14	4	< 25	-
26/04/2010	S4	16.5	<0,1	Liner STS75	< 24		247	14	516	16	< 49		28	5	< 32	
03/03/2010	S4	17	<0,1	Liner STS75	< 19	-	127	9	241	10	< 35	-	13	4	< 26	-
26/04/2010	S4	17	<0,1	Liner STS75	< 25	-	226	14	400	15	< 48	-	21	5	< 36	-
26/04/2010	S4	19	<0,1	Liner STS75	< 25	-	213	14	477	16	< 49	-	15	5	< 27	-

Pb (mg/kg**)	Pb - incerteza (mg/kg**)	Se (mg/kg**)	Se - Incerteza (mg/kg**)	As (mg/kg**)	As - incerteza (mg/kg**)	Hg (mg/kg**)	Hg - incerteza (mg/kg**)	Zn (mg/kg**)	Zn - incerteza (mg/kg**)	W (mg/kg**)	W - incerteza (mg/kg**)	Cu (mg/kg**)	Cu - incerteza (mg/kg**)	Ni (mg/kg**)	Ni - incerteza (mg/kg**)	Co (mg/kg**)	Co - incerteza (mg/kg**)
< 29	-	< 16	-	< 24	-	< 333	-	129	19	< 216	-	< 66	-	< 198	-	< 720	-
< 40	-	< 21	-	< 32	-	< 49	-	221	28	< 323	-	< 94	-	< 301	-	< 1580	-
< 28	-	< 16	-	< 22	-	< 34	-	111	18	< 226	-	< 60	-	< 201	-	< 730	-
< 35	-	< 21	-	< 29	-	< 46	-	202	27	< 303	-	< 82	-	< 289	-	< 1580	-
< 33	-	< 17	-	< 26	-	< 37	-	146	21	< 251	-	< 68	-	< 226	-	< 600	-
< 36	-	< 22	-	< 32	-	< 51	-	190	27	< 339	-	< 89	-	< 288	-	< 980	-
< 33	-	< 19	-	< 27	-	< 40	-	128	21	< 274	-	< 72	-	< 235	-	< 850	-
< 36	-	< 22	-	< 27	-	< 49	-	185	27	< 316	-	< 89	-	< 248	-	< 1280	-
< 33	-	< 19	-	< 27	-	< 41	-	150	22	< 273	-	< 73	-	< 237	-	< 980	-
< 40	-	< 24	-	< 33	-	< 54	-	192	28	< 360	-	< 94	-	< 301	-	< 1230	-
< 33	-	< 18	-	< 27	-	< 40	-	127	21	< 265	-	< 70	-	< 210	-	< 850	-
< 35	-	< 21	-	< 30	-	< 50	-	181	26	< 334	-	< 88	-	< 286	-	< 1250	-
< 31	-	< 17	-	< 26	-	< 40	-	115	20	< 266	-	< 70	-	< 231	-	< 840	-
< 33		< 22		< 30		< 48		150	24	< 335		< 88		< 280		< 1230	
< 31	-	< 16	-	< 25	-	< 37	-	107	19	< 255	-	< 75	-	< 226	-	< 880	-
< 41		< 24		< 32		< 57		196	29	< 386		< 124		< 317		< 1300	
< 33	-	< 17	-	< 26	-	< 37	-	121	20	< 254	-	< 70	-	< 222	-	< 810	-
< 36		< 23		< 32		< 52		195	28	< 355		< 95		< 258		< 1320	
< 30	-	< 18	-	< 24	-	< 37	-	107	18	< 246	-	< 64	-	< 209	-	< 770	-
< 40		< 24		< 32		< 54		185	27	< 374		< 102		< 312		< 1280	
< 30	-	< 16	-	< 24	-	< 35	-	97	17	< 230	-	< 74	-	< 212	-	< 560	-
< 38		< 22		< 31		< 48		177	26	< 309		< 88		< 241		< 1270	
< 30	-	< 17	-	< 24	-	< 36	-	97	17	< 234	-	< 73	-	< 201	-	< 830	
< 42	-	< 24	-	< 33	-	< 56	-	190	28	< 374	-	< 96	-	< 314	-	< 1350	-
< 42	-	< 22	-	< 33	-	< 55	-	225	30	< 363	-	< 212	-	< 305	-	< 1130	-

Sondagem S4 - RESULTADOS DOS ENSAIOS MULTI-PID E FRX

Fe (mg/kg**)	Fe - incerteza (mg/kg**)	Mn (mg/kg**)	Mn - incerteza (mg/kg**)	Cr (mg/kg**)	Cr - incerteza (mg/kg**)	V (mg/kg**)	V - incerteza (mg/kg**)	Ti (mg/kg**)	Ti - incerteza (mg/kg**)	Sc (mg/kg**)	Sc - incerteza (mg/kg**)	Ca (mg/kg**)	Ca - incerteza (mg/kg**)	K (mg/kg**)	K - incerteza (mg/kg**)	S (mg/kg**)	S - incerteza (mg/kg**)
64000	670	1330	140	< 145	-	< 350	-	11500	310	< 84	-	1720	180	< 800	-	< 53400	-
136400	1150	3000	240	< 128	-	< 530	-	13100	310	< 95	-	3220	210	< 840	-	< 47300	-
65700	670	1260	140	< 150	-	< 530	-	11100	310	< 86	-	1930	180	< 710	-	< 50100	-
138900	1150	2230	220	< 136	-	< 580	-	15700	350	< 87	-	3210	220	< 840	-	< 50300	-
55000	640	1000	130	< 135	-	< 300	-	7480	250	< 153	-	23800	530	1160	280	< 63500	-
85700	900	1930	190	< 144	-	< 370	-	8840	270	< 148	-	32800	610	1840	320	< 69900	-
58300	690	1010	140	< 145	-	< 360	-	8210	260	< 129	-	22900	520	1180	280	< 56600	-
89800	930	1600	190	< 137	-	< 420	-	9440	280	< 160	-	28200	570	1850	310	< 64100	-
61000	700	1060	140	< 146	-	< 360	-	8310	260	< 173	-	25300	550	1340	290	< 62100	-
81100	890	1480	180	< 139	-	< 440	-	8400	260	< 134	-	26500	540	2020	310	< 58800	-
59000	690	1010	140	< 150	-	< 310	-	8870	270	< 155	-	25300	550	2000	320	< 61300	
85600	900	1630	180	< 137	-	< 410	-	8960	270	< 155	-	26800	550	2370	330	< 65000	-
58700	670	1110	140	< 144	-	< 360	-	8680	270	< 136	-	26500	560	1580	300	< 62500	-
82300	870	1650	180	< 135		< 450		8980	270	< 138	-	28600	570	1910	310	< 52400	-
53600	630	970	130	< 148	-	< 310	-	8730	270	< 121	-	20300	490	1210	280	< 62500	-
83600	930	1620	190	< 134		< 390		8480	260	< 124	-	22600	500	1220	280	< 66600	-
54100	640	960	130	< 151	-	< 320	-	8700	270	< 115	-	17400	460	1190	280	< 57200	-
86600	930	1640	190	< 127		< 430		8360	250	< 115	-	19600	460	1390	270	< 61400	-
53600	620	850	120	< 146	-	< 320	-	9160	280	< 110	-	15600	440	1760	300	< 54100	-
86200	920	1570	190	< 144		< 480		9930	280	< 116	-	18500	460	2250	320	< 66600	-
49400	590	880	120	< 152	-	< 320	-	8890	270	< 100	-	11500	380	1610	290	< 56100	-
95500	940	1780	190	< 144		< 500		10800	290	< 106	-	14800	420	2230	320	< 57800	-
50100	590	1020	130	< 149	-	< 410	-	8460	260	< 75	-	4470	250	< 960	-	< 51600	-
91100	970	2130	210	< 136	-	< 460	-	8820	270	133	28	5530	260	< 748	-	< 53400	-
70900	840	1350	170	< 120	-	< 300	-	6750	220	130	39	20000	460	1480	280	< 57200	-

Ba (mg/kg**)	Ba - incerteza (mg/kg**)	Cs (mg/kg**)	Cs - incerteza (mg/kg**)	Te (mg/kg**)	Te - incerteza (mg/kg**)	Sb (mg/kg**)	Sb - incerteza (mg/kg**)	Sn (mg/kg**)	Sn - incerteza (mg/kg**)	Cd (mg/kg**)	Cd - incerteza (mg/kg**)	Ag (mg/kg**)	Ag - incerteza (mg/kg**)	Pd (mg/kg**)	Pd - incerteza (mg/kg**)
< 192	-	< 48	-	< 148	-	< 53	-	< 46	-	< 40	-	< 27	-	< 44	-
< 208	-	< 66	-	< 205	-	< 73	-	< 64	-	< 56	-	< 39	-	< 60	-
< 143	-	< 51	-	< 157	-	< 55	-	< 49	-	< 42	-	< 29	-	< 46	-
677	68	< 69	-	< 215	-	< 77	-	< 68	-	< 59	-	< 41	-	< 62	-
< 162	-	< 46	-	< 184	-	< 65	-	< 58	-	< 49	-	< 35	-	< 54	-
590	76	< 64	-	< 228	-	< 91	-	< 81	-	< 69	-	< 49	-	< 75	-
< 179	-	< 57	-	< 200	-	< 72	-	< 64	-	< 54	-	< 38	-	< 59	-
654	73	< 52	-	< 190	-	< 79	-	< 53	-	< 66	-	< 47	-	< 72	-
< 186	-	< 51	-	< 207	-	< 74	-	< 59	-	< 56	-	< 38	-	< 62	-
473	80	< 68	-	< 272	-	< 97	-	< 86	-	< 74	-	< 53	-	< 80	-
< 172	-	< 56	-	< 194	-	< 69	-	< 62	-	< 52	-	< 37	-	< 56	-
653	87	63	21	< 294	-	< 105	-	< 80	-	< 79	-	< 56	-	< 86	-
< 173	-	< 63	-	< 195	-	< 70	-	< 62	-	< 53	-	< 37	-	< 58	-
520	69	< 64	-	< 200	-	< 82	-	< 73	-	< 62	-	< 44	-	< 69	-
< 165	-	< 61	-	< 188	-	< 67	-	< 59	-	< 51	-	< 35	-	< 57	-
574	83	< 80	-	< 282	-	< 90	-	< 89	-	< 76	-	< 51	-	< 82	-
< 163	-	< 60	-	< 185	-	< 65	-	< 58	-	< 49	-	< 34	-	< 55	-
513	79	< 76	-	< 267	-	< 96	-	< 84	-	< 74	-	< 52	-	< 78	-
< 163	-	< 60	-	< 186	-	< 67	-	< 59	-	< 51	-	< 34	-	< 56	-
437	76	< 82	-	< 258	-	< 93	-	< 81	-	< 70	-	< 49	-	< 74	-
< 159	-	< 59	-	< 183	-	< 65	-	< 58	-	< 49	-	< 34	-	< 55	-
418	70	< 76	-	< 238	-	< 84	-	< 75	-	< 65	-	< 46	-	< 70	-
< 221	-	< 56	-	< 173	-	< 61	-	< 54	-	< 47	-	< 32	-	< 50	-
394	85	< 83	-	< 292	-	< 106	-	< 91	-	< 72	-	< 51	-	< 86	-
537	84	< 70	-	< 218	-	< 101	-	< 87	-	< 75	-	< 55	-	< 82	-

Sondagens S5A e S5B - RESULTADOS DOS ENSAIOS MULTI-PID E FRX

DATA (da analise)	Ponto de Sondagem	Profundidade* (m)	isobutileno)	Tipo de amostragem	Mo (mg/kg**)	Mo - incerteza (mg/kg**)	Zr (mg/kg**)	Zr - incerteza (mg/kg**)	Sr (mg/kg**)	Sr - incerteza (mg/kg**)	U (mg/kg**)	U - incerteza (mg/kg**)	Rb (mg/kg**)	Rb - incerteza (mg/kg**)	Th (mg/kg**)	Th - incerteza (mg/kg**)
22/02/2010	S5 A	0,5-1,5	5,6***	Liner MC5	-	-	-	-	-	-	-	-	-	-	-	-
27/04/2010	S5 A	0,5-1,5	5,6***	Liner MC5	< 29	-	970	23	292	12	< 49	-	47	6	< 27	-
22/02/2010	S5 A	2	10,5***	Trado****	<24	-	749	18	204	9	<39	-	37	5	<24	-
27/04/2010	S5 A	2	10,5***	Trado****	< 27	-	838	23	233	12	< 54	-	40	6	< 32	-
22/02/2010	S5 A	4	-	Trado****	<24	-	932	19	120	7	<39	-	39	5	<20	-
27/04/2010	S5 A	4	-	Trado****	< 28	-	1156	23	153	9	< 47	-	49	6	< 25	-
22/02/2010	S5 A	4-5	7,5***	Liner-MC5	<24	-	1064	20	36	4	<31	-	25	4	<20	-
27/04/2010	S5 A	4-5	7,5***	Liner-MC5	< 32	-	1679	29	57	6	< 33	-	39	6	30	9
23/02/2010	S5 A (ver nota)	4-5 (ver nota)	-	Trado****	<14	-	306	10	61	5	<26	-	12	3	<20	-
	S5 A (ver nota)	4-5 (ver nota)	-	Trado****	< 27	-	1013	22	138	8	< 44	-	40	5	< 23	-
Nota - argila n	egra.															
22/02/2010	S5 A	5.5	-	Trado****	<23	-	915	18	77	6	<36	-	33	4	<20	-
27/04/2010	S5 A	5.5	-	Trado****	< 30	-	1621	27	131	8	< 43	-	59	6	31	9
19/02/2010	S5 B	0,5-0,95	<0,1	Liner-MC5	< 24	-	921	19	127	7	<38	-	27	4	<21	-
20/02/2010	S5 B	2.5-3.5	<0,1	Liner-MC5	<20	-	263	11	180	9	<32	-	<11	-	<24	-
27/04/2010	S5 B	2.5-3.5	<0,1	Liner-MC5	< 26	-	438	17	291	13	< 44	-	< 16	-	< 30	-

Pb (mg/kg**)	Pb - incerteza (mg/kg**)	Se (mg/kg**)	Se - incerteza (mg/kg**)	As (mg/kg**)	As - incerteza (mg/kg**)	Hg (mg/kg**)	Hg - incerteza (mg/kg**)	Zn (mg/kg**)	Zn - incerteza (mg/kg**)	W (mg/kg**)	W - incerteza (mg/kg**)	Cu (mg/kg**)	Cu - incerteza (mg/kg**)	Ni (mg/kg**)	Ni - incerteza (mg/kg**)	Co (mg/kg**)	Co - incerteza (mg/kg**)
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
< 33	-	< 22	-	< 43	-	< 49	-	310	32	< 321	-	< 85	-	< 264	-	< 1060	-
<27	-	<16	-	<34	-	<36	-	182	22	<237	-	<79	-	<204	-	<740	-
< 37	-	< 26	-	< 48	-	< 62	-	301	35	< 417	-	< 146	-	< 330	-	< 940	-
<24	-	<16	-	<30	-	<34	-	251	24	<216	-	<65	-	<186	-	<680	-
< 29	-	< 20	-	< 36	-	< 42	-	349	31	< 280	-	< 85	-	< 224	-	< 860	-
<28	-	<14	-	<26	-	<31	-	253	22	<207	-	<68	-	<168	-	<530	-
< 29	-	< 21	-	< 33	-	< 45	-	267	29	< 287	-	< 87	-	< 244	-	< 970	-
<24	-	<12	-	<18	-	<25	-	98	14	<155	-	<57	-	<128	-	<320	-
< 33	-	< 18	-	< 31	-	< 41	-	246	26	< 263	-	< 78	-	< 215	-	< 860	-
<28	-	<15	-	<27	-	<32	-	236	23	<216	-	<62	-	<170	-	<470	-
< 33	-	< 19	-	< 36	-	< 44	-	437	35	< 288	-	< 73	-	< 235	-	< 960	-
<28	-	<15	-	<29	-	<34	-	139	19	<220	-	<57	-	<193	-	<530	-
<29	-	<15	-	<24	-	<34	-	91	17	<230	-	<70	-	<204	-	<600	-
< 39	-	< 23	-	< 33	-	< 51	-	157	25	< 326	-	< 89	-	< 310	-	< 1030	-

Fe (mg/kg**)	Fe - incerteza (mg/kg**)	Mn (mg/kg**)	Mn - incerteza (mg/kg**)	Cr (mg/kg**)	Cr - incerteza (mg/kg**)	V (mg/kg**)	V - incerteza (mg/kg**)	Ti (mg/kg**)	Ti - incerteza (mg/kg**)	Sc (mg/kg**)	Sc - incerteza (mg/kg**)	Ca (mg/kg**)	Ca - incerteza (mg/kg**)	K (mg/kg**)	K - incerteza (mg/kg**)	S (mg/kg**)	S - incerteza (mg/kg**)
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
64800	760	2000	190	< 137	-	< 320	-	6040	240	< 100	-	12900	390	5750	410	< 59300	-
48500	590	1100	130	<149	-	<440	-	7600	250	<126	-	8280	340	5470	410	<52600	-
53400	750	1300	170	< 99	-	< 330	-	5630	190	128	32	7640	290	3680	330	< 50800	-
36000	490	1160	130	<153	-	<410	-	5550	230	<107	-	5450	280	6130	430	<54200	-
47200	620	1560	160	< 150	-	< 390	-	5480	220	< 93	-	6750	300	7090	450	< 54100	-
28100	410	461	85	<167	-	<300	-	4410	210	<66	-	<630	-	3430	340	<51400	-
56400	700	850	140	< 150	-	< 280	-	3770	190	77	19	674	150	5080	400	< 53500	-
13800	250	419	69	<167	-	<274	-	2900	160	<99	-	4240	260	2470	290	<47800	-
50000	630	2160	180	< 150	-	< 340	-	4820	210	< 103	-	4800	260	6020	420	< 48900	-
29000	430	780	100	<162	-	<400	-	4660	220	<92	-	3000	230	5270	400	<53800	-
59400	690	1720	170	< 149	-	< 390	-	5010	220	< 100	-	4830	270	7490	460	< 55200	-
46800	560	1200	130	<141	-	<360	-	7460	250	<81	-	3440	230	4250	370	<49400	-
59800	640	840	120	<149	-	<390	-	10170	290	<93	-	4210	250	<846	-	<48800	-
120000	1100	1960	210	< 137	-	< 530	-	11920	310	< 100	-	5740	280	< 840	-	< 52400	-

Ba (mg/kg**)	Ba - incerteza (mg/kg**)	Cs (mg/kg**)	Cs - incerteza (mg/kg**)	Te (mg/kg**)	Te - incerteza (mg/kg**)	Sb (mg/kg**)	Sb - incerteza (mg/kg**)	Sn (mg/kg**)	Sn - incerteza (mg/kg**)	Cd (mg/kg**)	Cd - incerteza (mg/kg**)	Ag (mg/kg**)	Ag - incerteza (mg/kg**)	Pd (mg/kg**)	Pd - incerteza (mg/kg**)
_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
267	62	< 68	-	< 209	-	< 74	-	< 65	-	< 56	-	< 40	-	< 60	-
169	46	<51	-	<156	-	<55	-	<49	-	<42	-	<29	-	<45	-
329	78	< 86	-	< 261	-	< 94	-	< 82	-	< 69	-	< 49	-	< 74	-
<181	-	<45	-	<138	-	<49	-	<44	-	<37	-	<25	-	<40	-
< 158	-	< 59	-	< 182	-	< 64	-	< 57	-	< 48	-	< 34	-	< 52	-
<159	-	<41	-	<124	-	<44	-	<39	-	<33	-	<22	-	<37	-
< 2213	-	< 55	-	< 166	-	< 59	-	< 51	-	< 44	-	< 32	-	< 47	-
<136	-	<35	-	<108	-	<38	-	<33	-	<30	-	<20	-	<32	-
< 196	-	< 50	-	< 152	-	< 53	-	< 47	-	< 42	-	< 28	-	< 44	-
<170	-	<43	-	<131	-	<47	-	<41	-	<35	-	<24	-	<38	-
< 211	-	< 53	-	< 160	-	< 57	-	< 49	-	< 42	-	< 29	-	< 46	-
<164	-	<49	-	<151	-	<54	-	<47	-	<40	-	<28	-	<44	-
<204	-	<51	-	<155	-	<54	-	<48	-	<42	-	<29	-	<46	-
191	60	< 66	-	< 203	-	< 72	-	< 64	-	< 55	-	< 39	-	< 60	-

DATA (da analise)	Ponto de Sondagem	Profundidade* (m)	VOC (ppm de isobutileno)	Tipo de amostragem	Mo (mg/kg**)	Mo - incerteza (mg/kg**)	Zr (mg/kg**)	Zr - incerteza (mg/kg**)	Sr (mg/kg**)	Sr - incerteza (mg/kg**)	U (mg/kg**)	U - incerteza (mg/kg**)	Rb (mg/kg**)	Rb - incerteza (mg/kg**)	Th (mg/kg**)	Th - incerteza (mg/kg**)
23/02/2010	S6 A	. 1	<0,1	Trado****	<25	-	972	20	90	7	<39	-	37	5	<22	-
20/04/2010	S6 A	1	<0,1	Trado****	< 30	-	1166	25	118	8	< 49	-	45	6	< 27	-
23/02/2010	S6 A	2	<0,1	Trado****	<25	-	1115	22	118	7	<41	-	38	5	<22	-
20/04/2010	S6 A	2	<0,1	Trado****	< 31	-	1523	27	170	9	< 49	-	53	6	< 26	-
23/02/2010	S6 A	3,5	<0,1	Liner MC5	<20	-	625	15	12	3	<32	-	51	5	<22	-
20/04/2010	S6 A	3,5	<0,1	Liner MC5	< 24	-	1057	19	21	4	< 43	-	94	7	< 20	-
23/02/2010	S6 A	5	<0,1	Liner MC5	<23	-	990	19	109	7	<35	-	28	4	<20	-
20/04/2010	S6 A	5	<0,1	Liner MC5	< 33	-	1950	30	206	10	< 45	-	54	6	40	10
23/02/2010	S6 A	6,5	<0,1	Liner MC5	<26	-	1347	23	33	4	<37	-	32	5	<22	-
20/04/2010	S6 A	6,5	<0,1	Liner MC5	< 32	-	1837	29	46	5	< 46	-	50	6	< 26	-
23/02/2010	S6 A	8	<0,1	Liner MC5	<25	-	1170	21	39	5	<37	-	37	5	<21	-
20/04/2010	S6 A	8	<0,1	Liner MC5	< 28	-	1623	26	62	6	< 43	-	51	6	27	8
23/02/2010	S6 A	9,5	<0,1	Liner MC5	<20	-	1419	22	32	4	<39	-	53	5	<21	
20/04/2010	S6 A	9,5	<0,1	Liner MC5	< 34	-	2173	32	55	6	< 48	-	87	8	37	10
24/02/2010	S6 A	. 11	<0,1	Liner MC5	<22	-	1022	20	18	4	<33	-	25	4	<20	-
20/04/2010	S6 A	11	<0,1	Liner MC5	< 28	-	1490	24	34	5	< 39	-	41	5	24	8
24/02/2010	S6 B	. 1	<0,1	Trado****	<26	-	1154	22	112	7	<40	-	42	5	<22	
20/04/2010	S6 B	1	<0,1	Trado****	< 30	-	1746	28	160	9	< 49	-	66	7	30	9
24/02/2010	S6 B	2	<0,1	Liner MC5	<21	-	607	15	16	3	<34	-	46	5	<20	-
20/04/2010	S6 B	2	<0,1	Liner MC5	< 23	-	993	18	34	4	< 40	-	72	6	< 19	-
24/02/2010	S6 B	3,5	<0,1	Liner MC5	<21	-	694	16	11	3	<35	-	59	5	<20	-
20/04/2010	S6 B	3,5	<0,1	Liner MC5	< 22	-	763	16	14	3	< 40	-	66	6	< 19	-
25/02/2010	S6 B	6,2	<0,1	SPT *****	<16	-	1048	19	23	4	<42	-	82	6	<21	-
20/04/2010	S6 B	6,2	<0,1	SPT *****	< 26	-	1630	26	40	5	< 45	-	134	9	31	9
25/02/2010	S6 B	8	<0,1	Liner MC5	<26	-	1343	23	40	5	<36	-	28	4	22	7
20/04/2010	S6 B	8	<0,1	Liner MC5	< 32	-	1884	29	64	6	< 46	-	46	6	33	9

1/4

Pb (mg/kg**)	Pb - incerteza (mg/kg**)	Se (mg/kg**)	Se - incerteza (mg/kg**)	As (mg/kg**)	As - incerteza (mg/kg**)	Hg (mg/kg**)	Hg - incerteza (mg/kg**)	Zn (mg/kg**)	Zn - incerteza (mg/kg**)	W (mg/kg**)	W - incerteza (mg/kg**)	Cu (mg/kg**)	Cu - incerteza (mg/kg**)	Ni (mg/kg**)	Ni - incerteza (mg/kg**)	Co (mg/kg**)	Co - incerteza (mg/kg**)
<31	-	<16	-	<24	-	<38	-	245	25	<255	-	<71	-	<185	-	<820	-
< 32	-	< 21	-	< 36	-	< 46	-	330	32	< 291	-	< 92	-	< 257	-	< 1070	-
<31	-	<17	-	<29	-	<37	-	325	28	<244	-	<78	-	<202	-	<790	-
< 36	-	< 20	-	< 35	-	< 45	-	440	36	< 289	-	< 87	-	< 217	-	< 1040	-
<28	-	<14	-	<23	-	<29	-	120	17	<190	-	<69	-	<152	-	<420	-
< 28	-	< 16	-	< 26	-	< 35	-	219	22	< 225	-	< 73	-	< 178	-	< 520	-
<32	-	<15	-	<27	-	<33	-	276	25	<211	-	<69	-	<181	-	<650	-
< 33	-	< 21	-	< 29	-	< 46	-	602	41	< 277	-	< 78	-	< 258	-	< 900	-
<34	-	<16	-	<26	-	<36	-	188	22	<228	-	<65	-	<187	-	<730	-
< 30	-	< 19	-	< 36	-	< 42	-	279	29	< 267	-	< 75	-	< 236	-	< 1010	-
<26	-	<15		<28	-	<34	-	227	23	<225	-	<63	-	<183		<670	
< 33	-	< 18	-	< 25	-	< 40	-	339	29	< 258	-	< 72	-	< 208	-	< 750	-
<31	•	<15		<24	-	<33	-	187	21	<216	-	<64	-	<182	-	<450	
< 32	-	< 20	-	< 36	-	< 44	-	309	30	< 287	-	< 81	-	< 232	-	< 870	-
<29	-	<15	-	<27	-	<32	-	135	19	<204	-	<69	-	<175	-	<490	-
< 33	-	< 18	-	< 28	-	< 41	-	231	25	< 267	-	< 75	-	< 218	-	< 840	-
<29	-	<16	-	<27	-	<34	-	338	28	<225	-	<67	-	<190	-	<720	-
< 31	-	< 20	-	< 34	-	< 43	-	475	36	< 284	-	< 90	-	< 207	-	< 950	-
<28	-	<14	-	<23	-	<30	-	116	17	<195	-	<72	-	<156	-	<380	-
< 28	-	< 15	-	< 26	-	< 34	-	199	21	< 223	-	< 73	-	< 174	-	< 500	-
<28	-	<14	-	<23	-	<30	-	124	17	<195	-	<63	-	<155	-	<400	-
< 27	-	< 15	-	< 25	-	< 33	-	156	19	< 212	-	< 76	-	< 170	-	< 450	-
<32	-	<16	-	<26	-	<32	-	165	20	<210	-	74	-	<168	-	<340	-
< 37	-	< 19	-	< 25	-	< 41	-	272	27	< 258	-	< 68	-	< 207	-	< 720	-
<31	-	<16	-	<30	-	<35	-	252	25	<225	-	<65	-	<187	-	<550	-
< 36	-	< 20	•	< 26	-	< 42	-	360	32	< 268	-	< 72	-	< 232	-	< 930	-

Fe (mg/kg**)	Fe - incerteza (mg/kg**)	Mn (mg/kg**)	Mn - incerteza (mg/kg**)	Cr (mg/kg**)	Cr - incerteza (mg/kg**)	V (mg/kg**)	V - incerteza (mg/kg**)	Ti (mg/kg**)	Ti - incerteza (mg/kg**)	Sc (mg/kg**)	Sc - incerteza (mg/kg**)	Ca (mg/kg**)	Ca - incerteza (mg/kg**)	K (mg/kg**)	K - incerteza (mg/kg**)	S (mg/kg**)	S - incerteza (mg/kg**)
48100	590	1860	160	<150	-	<420	-	6040	240	<87	-	2840	220	3350	350	<49700	-
66400	770	2860	220	< 154	-	< 430	-	6810	240	< 88	-	3900	240	5290	410	< 55000	-
44600	570	2180	170	<152	-	<410	-	4730	220	<97	-	3650	240	4390	380	<49900	-
65700	750	3520	230	< 148	-	< 390	-	4870	220	< 100	-	4850	270	5970	420	< 56500	-
15400	300	581	86	<168	-	<274	-	2350	160	<77	-	1820	220	16800	640	<56800	-
29700	420	1280	120	< 142	-	< 320	-	2910	170	< 84	-	2750	250	25200	780	< 57100	-
34400	460	830	110	<157	-	<340	-	4300	210	<79	-	1670	190	2480	310	<50200	-
83300	830	2030	190	< 147	-	< 320	-	5560	230	< 81	-	2830	210	4070	370	< 58000	-
39700	520	1260	130	<152	-	<370	-	4330	200	<63	-	350	180	4800	390	<51300	-
64700	730	4670	260	< 147	-	< 340	-	3910	200	< 65	-	700	150	5250	400	< 54800	-
33800	480	880	110	<160	-	<410	-	5290	230	<66	-	320	150	5720	410	<52200	-
50200	600	1350	140	< 152	-	< 400	-	5280	220	< 68	-	840	170	8460	480	< 56100	-
36700	470	243	76	<152	-	<340	-	3150	180	<59	-	<191	-	6470	440	<50700	-
58700	700	390	110	< 146	-	< 330	-	3460	180	< 63	-	510	160	9200	500	< 48300	-
29700	440	412	87	<156	-	<320	-	2530	170	<60	-	<670	-	7860	470	<49900	-
50500	600	670	110	< 152	-	< 330	-	2910	180	< 66	-	< 490	-	11000	540	< 48100	-
38300	520	2240	170	<155	-	<370	-	3440	200	<89	-	2740	220	4640	390	<52100	-
60000	690	3410	220	< 150	-	< 370	-	3750	200	< 80	-	3070	230	7600	460	< 52500	-
15600	300	725	94	<157	-	<290	-	1970	150	<71	-	1500	210	17000	630	<53600	-
27900	400	1220	120	< 152	-	< 300	-	2680	160	< 69	-	2130	230	21500	710	< 53000	-
17200	320	729	96	<170	-	<320	-	2350	170	<78	-	1760	230	20400	710	<53000	-
21400	360	910	110	< 151	-	< 290	-	2360	160	< 76	-	2010	220	20100	680	< 47300	-
19700	350	760	100	<170	-	<310	-	2160	160	<76	-	1490	210	14400	610	<51800	-
35400	510	1270	140	< 157	-	< 320	-	2550	170	< 78	-	2230	230	17700	660	< 54600	-
36000	500	439	93	<156	-	<370	-	3750	200	<61		<620	-	4550	380	<50300	-
54800	670	740	130	< 151	-	< 360	-	3760	200	< 68	-	550	150	7120	450	< 49400	-

3/4

Ba (mg/kg**)	Ba - incerteza (mg/kg**)	Cs (mg/kg**)	Cs - incerteza (mg/kg**)	Te (mg/kg**)	Te - incerteza (mg/kg**)	Sb (mg/kg**)	Sb - incerteza (mg/kg**)	Sn (mg/kg**)	Sn - incerteza (mg/kg**)	Cd (mg/kg**)	Cd - incerteza (mg/kg**)	Ag (mg/kg**)	Ag - incerteza (mg/kg**)	Pd (mg/kg**)	Pd - incerteza (mg/kg**)
<142	-	<52	-	<158	-	<55	-	<50	-	<42	-	<29	-	<45	-
406	60	< 65	-	< 200	-	< 71	-	< 63	-	< 52	-	< 37	-	< 57	-
<130	-	<48	-	<145	-	<51	-	<45	-	<39	-	<26	-	<42	-
195	49	< 53	-	< 162	-	< 58	-	< 51	-	< 43	-	< 30	-	< 47	-
<174	-	<44	-	<136	-	<48	-	<42	-	<36	-	<25	-	<40	-
< 210	-	< 53	-	< 163	-	< 58	-	< 51	-	< 43	-	< 31	-	< 48	-
<166	-	<42	-	<128	-	<45	-	<40	-	<34	-	<23	-	<37	-
< 212	-	< 53	-	< 162	-	< 57	-	< 50	-	< 42	-	< 30	-	< 46	-
<174	-	<44	-	<134	-	<47	-	<42	-	<35	-	<24	-	<39	-
< 201	-	< 50	-	< 153	-	< 54	-	< 48	-	< 41	-	< 28	-	< 44	-
<174	-	<44	-	<133	-	<47	-	<42	-	<35	-	<24	-	<38	-
< 200	-	< 50	-	< 152	-	< 54	-	< 48	-	< 40	-	< 29	-	< 44	-
<168	-	<43	-	<130	-	<46	-	<41	-	<34	-	<23	-	<38	-
< 196	-	< 50	-	< 151	-	< 53	-	< 47	-	< 39	-	< 27	-	< 43	-
<170	-	<44	-	<134	-	<47	-	<42	-	<36	-	<24	-	<39	-
< 197	-	< 51	-	< 155	-	< 55	-	< 48	-	< 41	-	< 29	-	< 44	-
<160		<44		<135	-	<48	-	<42	-	<36	-	<25	-	<39	-
< 140	-	< 51	-	< 155	-	< 54	-	< 48	-	< 41	-	< 28	-	< 45	-
<182		<46		<142	-	<50	-	<44	-	<38	-	<27		<41	-
< 206	-	< 52	-	< 159	-	< 56	-	< 50	-	< 42	-	< 30	-	< 47	-
<158		<45		<139	-	<49	-	<43	-	<37	-	<26	-	<41	-
< 192	-	< 49	-	< 151	-	< 54	-	< 47	-	< 41	-	< 28	-	< 44	-
<170		<44		<133	-	<47	-	<42	-	<36	-	<24		<38	
< 207	-	< 53	-	< 161	-	< 57	-	< 50	-	< 43	-	< 30	-	< 47	-
<169	-	<43	-	<131	-	<46	-	<41	-	<35	-	<23	-	<38	-
< 207	-	< 53	•	< 160	•	< 57	-	< 50	-	< 43	•	< 30	-	< 45	•

DATA (da analise)	Ponto de Sondagem	Profundidade* (m)	VOC (ppm de isobutileno)	Tipo de amostragem	Mo (mg/kg**)	Mo - incerteza (mg/kg**)	Zr (mg/kg**)	Zr - incerteza (mg/kg**)	Sr (mg/kg**)	Sr - incerteza (mg/kg**)	U (mg/kg**)	U - incerteza (mg/kg**)	Rb (mg/kg**)	Rb - incerteza (mg/kg**)	Th (mg/kg**)	Th - incerteza (mg/kg**)
02/03/2010	S7 A	1	<0,1	Trado****	<25	-	1140	21	58	5	<38	-	39	5	<22	-
20/04/2010	S7 A	1	<0,1	Trado****	< 31	-	1619	28	83	7	< 42	-	53	6	28	9
02/03/2010	S7 A	2	<0,1	Liner MC5	<27	-	1403	24	41	5	<35	-	23	4	<22	-
20/04/2010	S7 A	2	<0,1	Liner MC5	< 30	-	1860	28	58	6	< 32	-	30	5	36	9
02/03/2010	S7 A	3.5	<0,1	Liner MC5	<26	-	1012	20	44	5	<39	-	42	5	<21	-
20/04/2010	S7 A	3.5	< 0,1	Liner MC5	< 32	-	1553	28	74	7	< 47	-	64	7	32	10
02/03/2010	S7 A	5	<0,1	Liner MC5	<20	-	338	13	86	6	<33	-	14	4	<23	-
20/04/2010	S7 A	5	<0,1	Liner MC5	< 25	-	496	17	136	9	< 44	-	25	5	< 31	-
02/03/2010	S7 A	6.5	<0,1	Liner MC5	<22	-	769	17	46	5	<33	-	24	4	<20	-
20/04/2010	S7 A	6.5	<0,1	Liner MC5	< 23	-	751	17	46	5	< 35	-	26	4	< 20	-
02/03/2010	S7 A	8	< 0,1	Liner MC5	<22	-	289	13	152	9	<36	-	12	4	<26	-
20/04/2010	S7 A	8	<0,1	Liner MC5	< 24	-	390	15	201	10	< 40	-	16	4	< 31	-

Pb (mg/kg**)	Pb - incerteza (mg/kg**)	Se (mg/kg**)	Se - incerteza (mg/kg**)	As (mg/kg**)	As - incerteza (mg/kg**)	Hg (mg/kg**)	Hg - incerteza (mg/kg**)	Zn (mg/kg**)	Zn - incerteza (mg/kg**)	W (mg/kg**)	W - incerteza (mg/kg**)	Cu (mg/kg**)	Cu - incerteza (mg/kg**)	Ni (mg/kg**)	Ni - incerteza (mg/kg**)	Co (mg/kg**)	Co - incerteza (mg/kg**)
<33	-	<15	-	<28	-	<35	-	176	21	<227	-	<73	-	<188	-	<640	-
< 35	-	< 19	-	< 30	-	< 44	-	252	28	< 281	-	< 82	-	< 234	-	< 970	-
<30	-	<16	-	<29	-	<35	-	142	20	<230	-	<57	-	<191	-	<680	-
< 26	-	< 19	-	< 33	-	< 40	-	199	24	< 258	-	< 87	-	< 222	-	< 950	-
<33	-	<16	-	<25	-	<34	-	184	21	<216	-	<74	-	<194	-	<720	-
< 35	-	< 22	-	< 39	-	< 50	-	292	31	< 314	-	< 81	-	< 270	-	< 1070	-
<29	-	<15	-	<24	-	<34	-	169	21	<224	-	<78	-	<203	-	<840	-
< 31	-	< 21	-	< 33	-	< 47	-	249	29	< 308	-	< 79	-	< 274	-	< 1190	-
<29	-	<14	-	<22	-	<31	-	75	15	<196	-	<66	-	<175	-	<650	-
< 32	-	< 16	-	< 26	-	< 35	-	121	18	< 219	-	< 68	-	< 188	-	< 740	-
<33	-	<18	-	<27	-	<40	-	137	21	<259	-	<69	-	<238	-	<860	-
< 39	-	< 21	-	< 30	-	< 47	-	199	26	< 305	-	< 92	-	< 282	-	< 1390	-

1/2

Fe (mg/kg*	Fe - incerteza *) (mg/kg**)	Mn (mg/kg**)	Mn - incerteza (mg/kg**)	Cr (mg/kg**)	Cr - incerteza (mg/kg**)	V (mg/kg**)	V - incerteza (mg/kg**)	Ti (mg/kg**)	Ti - incerteza (mg/kg**)	Sc (mg/kg**)	Sc - incerteza (mg/kg**)	Ca (mg/kg**)	Ca - incerteza (mg/kg**)	K (mg/kg**)	K - incerteza (mg/kg**)	S (mg/kg**)	S - incerteza (mg/kg**)
38300	510	1399	137	< 155	-	<400	-	4828	220	<68	-	930	173	6910	450	51400	-
59000	700	2330	190	< 150	-	< 380	-	4650	210	< 70	-	1280	180	8910	490	< 48400	-
43200	550	932	121	< 153	-	<380	-	4310	210	<61	-	<570	-	2061	297	48500	-
63900	690	2180	180	< 156	-	< 340	-	4690	210	< 60	-	< 410	-	2700	330	< 53300	-
39800	520	1121	127	< 155	-	<340	-	6286	240	<64	-	<590	-	3540	350	46300	-
64100	770	1850	180	< 145	-	< 330	-	6340	230	< 67	-	420	130	4130	360	< 49200	-
64500	670	1157	135	< 145	-	<420	-	11910	310	<71	-	641	147	2104	298	50200	-
103100	960	2130	200	< 143	-	< 480	-	12700	320	< 79	-	1210	170	2980	340	< 48600	-
34400	460	626	97	< 152	-	<400	-	7704	260	<61	-	383	173	2320	302	51800	-
43100	530	760	110	< 129	-	< 340	-	7570	240	57	17	< 360	-	1620	270	< 49600	-
76100	780	1191	149	< 136	-	<460	-	11700	310	<124	-	8100	324	1753	293	51300	-
111400	1000	2150	200	< 134	-	< 410	-	12400	310	< 128	-	8830	330	2210	310	< 54400	-

Ba (mg/kg**)	Ba - incerteza (mg/kg**)	Cs (mg/kg**)	Cs - incerteza (mg/kg**)	Te (mg/kg**)	Te - incerteza (mg/kg**)	Sb (mg/kg**)	Sb - incerteza (mg/kg**)	Sn (mg/kg**)	Sn - incerteza (mg/kg**)	Cd (mg/kg**)	Cd - incerteza (mg/kg**)	Ag (mg/kg**)	Ag - incerteza (mg/kg**)	Pd (mg/kg**)	Pd - incerteza (mg/kg**)
<141	-	<45	-	<137	-	<48	-	<43	-	<38	-	<25	-	<40	-
< 149	-	< 55	-	< 166	-	< 59	-	< 52	-	< 44	-	< 31	-	< 49	-
<169	-	<43	-	<130	-	<46	-	<40	-	<34	-	<23	-	<37	-
< 187	-	< 48	-	< 145	-	< 51	-	< 45	-	< 39	-	< 26	-	< 42	-
<180	-	<46	-	<139	-	<49	-	<43	-	<37	-	<25	-	<40	-
< 220	-	< 62	-	< 191	-	< 68	-	< 59	-	< 51	-	< 35	-	< 57	-
181	47	<52	-	<159	-	<56	-	<50	-	<43	-	<29	-	<47	-
275	61	< 66	-	< 206	-	< 74	-	< 64	-	< 56	-	< 40	-	< 61	-
<172	-	<43	-	<132	-	<46	-	<41	-	<35	-	<24	-	<38	-
< 232	-	< 59	-	< 180	-	< 64	-	< 55	-	< 49	-	< 34	-	< 52	-
303	54	<59	-	<181	-	<64	-	<57	-	<49	-	<33	-	<53	-
410	65	< 70	-	< 219	-	< 78	-	< 69	-	< 58	-	< 41	-	< 64	-

Sondagem S7B - RESULTADOS DOS ENSAIOS MULTI-PID E FRX

DATA (da analise)	Ponto de Sondagem	Profundidade* (m)	VOC (ppm de isobutileno)	Tipo de amostrage m	Mo (mg/kg**)	Mo - incerteza (mg/kg**)	Zr (mg/kg**)	Zr - incerteza (mg/kg**)	Sr (mg/kg**)	Sr - incerteza (mg/kg**)	U (mg/kg**)	U - incerteza (mg/kg**)	Rb (mg/kg**)	Rb - incerteza (mg/kg**)	Th (mg/kg**)	Th - incerteza (mg/kg**)
27/02/2010	S7 B (ver nota)	1 (ver nota)	<0,1	Trado****	<25	-	982	20	94	7	<42	-	56	6	<25	-
Nota - uma vez	que se detectou	ı a presenca de (Chumbo neste	ponto, que si	e atribuiu a p	roximidade d	a estrada (a d	cerca de 1 m	n), reiniciou-s	e a sondager	n a mais 1 m	de distancia	da estrada, r	um total de c	-	-
27/02/2010	S7 B	1	<0,1	Trado****	<26	-	1137	22	71	6	<43	-	55	6	<22	-
20/04/2010	S7 B	1	<0,1	Trado****	< 30	-	1249	25	114	8	< 53	-	79	8	< 27	-
27/02/2010	S7 B	1,8	<0,1	Liner MC5	<26	-	1127	22	68	6	<44	-	57	6	<23	-
20/04/2010	S7 B	1,8	<0,1	Liner MC5	< 28	-	1066	23	77	7	< 49	-	60	7	< 25	-
27/02/2010	S7 B	3,5	<0,1	Liner MC5	<27	-	1506	24	36	5	<34	-	20	4	24	7
20/04/2010	S7 B	3,5	<0,1	Liner MC5	< 33	-	2166	32	65	6	< 45	-	39	6	39	10
27/02/2010	S7 B	5	<0,1	Liner MC5	<24	-	1016	19	44	5	<35	-	30	4	<20	-
20/04/2010	S7 B	5	<0,1	Liner MC5	< 31	-	1820	29	77	6	< 46	-	43	6	32	9
27/02/2010	S7 B	6,5	<0,1	Liner MC5	<22	-	783	17	70	5	<34	-	30	4	<19	-
20/04/2010	S7 B	6,5	<0,1	Liner MC5	< 28	-	1227	24	125	8	< 46	-	59	6	27	9
27/02/2010	S7 B	8	<0,1	Liner MC5	<20	-	552	14	37	4	<30	-	11	3	<21	-
20/04/2010	S7 B	8	<0,1	Liner MC5	< 26	-	997	21	72	6	< 36	-	21	4	22	8
01/03/2010	S7 B	9,5	<0,1	Liner MC5	<22	-	554	15	58	5	<33	-	15	4	<24	-
20/04/2010	S7 B	9,5	<0,1	Liner MC5	< 24	-	612	17	67	6	< 33	-	13	4	< 21	-
01/03/2010	S7 B	10,5	<0,1	SPT *****	<22	-	683	16	79	6	<38	-	50	5	<22	-
20/04/2010	S7 B	10,5	<0,1	SPT *****	< 26	-	939	21	107	7	< 43	-	53	6	< 23	-
01/03/2010	S7 B	11.3	<0,1	Liner MC5	<23	-	615	17	74	6	<36	-	18	4	<25	-
20/04/2010	S7 B	11,3	<0,1	Liner MC5	< 28	-	981	23	94	8	< 44	-	32	5	< 25	-

Pb (mg/kg**)	Pb - incerteza (mg/kg**)	Se (mg/kg**)	Se - incerteza (mg/kg**)	As (mg/kg**)	As - incerteza (mg/kg**)	Hg (mg/kg**)	Hg - incerteza (mg/kg**)	Zn (mg/kg**)	Zn - incerteza (mg/kg**)	W (mg/kg**)	W - incerteza (mg/kg**)	Cu (mg/kg**)	Cu - incerteza (mg/kg**)	Ni (mg/kg**)	Ni - incerteza (mg/kg**)	Co (mg/kg**)	Co - incerteza (mg/kg**)
132	12	<17	-	<39	-	<36	-	223	24	<232	-	<72	-	<201	-	<790	-
-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
<31	-	<16	-	<29	-	<36	-	258	26	<232	-	<69	-	<204	-	<830	-
< 33	-	< 21	-	< 32	-	< 44	-	347	33	< 282	-	< 88	-	< 253	-	< 1040	-
<34	-	<17	-	<29	-	<36	-	236	25	<245	-	<64	-	<211	-	<820	-
< 31	-	< 21	-	< 34	-	< 45	-	283	29	< 295	-	< 88	-	< 242	-	< 890	-
<29	-	<17	-	<25	-	<34	-	122	18	<211	-	<74	-	<184	-	<730	-
< 29	-	< 20	-	< 36	-	< 43	-	227	26	< 272	-	< 79	-	< 231	-	< 1070	-
<27	-	<15	-	<24	-	<33	-	122	18	<208	-	<77	-	<179	-	<670	-
< 32	-	< 20	-	< 32	-	< 41	-	191	24	< 253	-	< 70	-	< 227	-	< 1020	-
<29	-	<15	-	<25	-	<30	-	131	18	<193	-	<60	-	<169	-	<600	-
< 34	-	< 18	-	< 34	-	< 41	-	212	25	< 265	-	< 77	-	< 218	-	< 910	-
<27	-	<15	-	<23	-	<30	-	165	19	<198	-	<72	-	<169	-	<670	-
< 35	-	< 17	-	< 27	-	< 40	-	284	28	< 253	-	< 95	-	< 231	-	< 1080	-
<31	-	<16	-	<26	-	<36	-	177	22	<242	-	<70	-	<219	-	<760	-
< 33	-	< 18	-	< 28	-	< 40	-	246	27	< 275	-	< 101	-	< 244	-	< 1180	-
<31	-	<15	-	<27	-	<33	-	110	17	<214	-	<79	-	<182	-	<680	-
< 36	-	< 19	-	< 31	-	< 38	-	166	22	< 252	-	< 76	-	< 223	-	< 780	-
<30	-	<17	-	<26	-	<36	-	178	22	<233	-	<63	-	<214	-	<1030	-
< 39	-	< 21	-	< 30	-	< 46	-	263	29	< 295	-	< 101	-	< 270	-	< 1330	-

Sondagem S7B - RESULTADOS DOS ENSAIOS MULTI-PID E FRX

Fe (mg/kg**)	Fe - incerteza (mg/kg**)	Mn (mg/kg**)	Mn - incerteza (mg/kg**)	Cr (mg/kg**)	Cr - incerteza (mg/kg**)	V (mg/kg**)	V - incerteza (mg/kg**)	Ti (mg/kg**)	Ti - incerteza (mg/kg**)	Sc (mg/kg**)	Sc - incerteza (mg/kg**)	Ca (mg/kg**)	Ca - incerteza (mg/kg**)	K (mg/kg**)	K - incerteza (mg/kg**)	S (mg/kg**)	S - incerteza (mg/kg**)
44700	570	1821	158	<151 -	-	<410	-	5869	232	<100	-	4439	264	7100	460	<52900	-
49600	600	2094	169	<150	-	<410	-	5501	227	<84	-	2310	210	6030	430	<50100	-
63800	750	2580	210	< 150	-	< 390	-	5390	220	< 77	-	2540	210	7600	460	< 56000	-
47800	600	1985	167	<151	-	<410	-	5918	233	<91	-	2847	222	5900	430	<53200	-
48900	640	2150	190	< 133	-	< 370	-	4920	210	75	21	2230	200	6080	420	< 50400	-
39800	520	745	108	<150	-	<320	-	2761	172	<63	-	<400	-	992	253	<46100	-
72400	770	2340	190	< 146	-	< 360	-	3860	200	< 66	-	870	150	3010	330	< 49200	-
35400	478	1062	120	<154	-	<356	-	5004	220	<67	-	<610	-	3840	360	<50000	-
66600	730	2470	190	< 156	-	< 320	-	5550	230	< 70	-	550	150	5050	400	< 49400	-
29300	427	776	104	<160	-	<380	-	5950	236	<64	-	<450	-	3630	350	<47600	-
53900	650	1810	170	< 152	-	< 420	-	6390	240	< 59	-	900	160	6370	430	< 51200	-
37100	480	640	98	<147	-	<400	-	7338	252	<59	-	<510	-	617	283	<45100	-
78300	780	1930	170	< 141	-	< 450	-	8620	260	< 59	-	< 400	-	< 770	-	< 47400	-
71200	710	1067	135	<140	-	<370	-	12300	310	<65	-	<490	-	<970	-	<51000	-
89300	850	1440	160	< 137	-	< 350	-	12200	310	< 66	-	< 410	-	< 890	-	< 50400	-
35900	490	1214	127	<154	-	<360	-	6964	255	<73	-	763	166	5920	420	<50300	-
51400	630	1890	170	< 153	-	< 350	-	7170	250	< 73	-	1230	180	6670	440	< 50200	-
73900	740	1378	150	<140	-	<420	-	12200	310	<67	-	596	149	1080	259	<51900	-
101600	960	2280	210	< 132	-	< 400	-	11700	300	< 62	-	450	130	2450	310	< 50400	-

Ba (mg/kg**)	Ba - incerteza (mg/kg**)	Cs (mg/kg**)	Cs - incerteza (mg/kg**)	Te (mg/kg**)	Te - incerteza (mg/kg**)	Sb (mg/kg**)	Sb - incerteza (mg/kg**)	Sn (mg/kg**)	Sn - incerteza (mg/kg**)	Cd (mg/kg**)	Cd - incerteza (mg/kg**)	Ag (mg/kg**)	Ag - incerteza (mg/kg**)	Pd (mg/kg**)	Pd - incerteza (mg/kg**)
200	45	<50	-	<151	-	<53	-	<45	-	<40	-	<28	-	<44	-
		-	-	-	-	-	-	-	-	-	-	-	-	-	-
136	43	<48	-	<145	-	<52	-	<46	-	<38	-	<27	-	<42	-
259	54	< 58	-	< 179	-	< 64	-	< 56	-	< 48	-	< 33	-	< 52	-
153	44	<49	-	<148	-	<52	-	<46	-	<39	-	<27	-	<43	-
< 169	-	< 63	-	< 194	-	< 69	-	< 61	-	< 52	-	< 36	-	< 56	-
<160	-	<41	-	<124	-	<44	-	<39	-	<33	-	<22	-	<35	-
< 181	-	< 47	-	< 140	-	< 49	-	< 43	-	< 37	-	< 26	-	< 39	-
<165	-	<42	-	<129	-	<45	-	<40	-	<34	-	<24	-	<38	-
< 195	-	< 50	-	< 151	-	< 53	-	< 47	-	< 40	-	< 28	-	< 43	-
<173	-	<43	-	<133	-	<47	-	<41	-	<36	-	<24	-	<39	-
< 219	-	< 54	-	< 166	-	< 59	-	< 52	-	< 45	-	< 31	-	< 48	-
<167	-	<42	-	<129	-	<46	-	<40	-	<35	-	<23	-	<38	-
< 213	-	< 54	-	< 163	-	< 58	-	< 51	-	< 44	-	< 30	-	< 48	-
<159	-	<51	-	<155	-	<55	-	<49	-	<42	-	<29	-	<46	-
167	54	< 61	-	< 187	-	< 66	-	< 59	-	< 50	-	< 35	-	< 54	-
236	44	<48	-	<146	-	<52	-	<46	-	<40	-	<27	-	<44	-
309	52	< 56	-	< 174	-	< 61	-	< 54	-	< 47	-	< 33	-	< 51	-
219	47	<52	-	<159	-	<56	-	<50	-	<42	-	<29	-	<47	-
211	55	< 61	-	< 185	-	< 66	-	< 58	-	< 50	-	< 35	-	< 52	-

Sondagem S8 - RESULTADOS DOS ENSAIOS MULTI-PID E FRX

20/04/2010 S8 0 - 1,3 < 0,1 Trado**** < 32 - 1618 29 146 9 < 52 - 56 7 20/04/2010 S8 2.5 < 0,1 Liner STS75 < 29 - 997 23 147 9 < 46 - 38 6 20/04/2010 S8 3.5 < 0,1 Liner STS75 < 26 - 1045 21 68 6 < 41 - 40 5 20/04/2010 S8 5.3 < 0,1 Liner MC5 < 25 - 731 20 457 15 < 44 - < 12 - 12 - 12 - 12 - 12 - 12 - 12 -	
20/04/2010 S8 3.5 <0,1 Liner STS75 < 26 - 1045 21 68 6 < 41 - 40 5 20/04/2010 S8 5.3 <0,1 Liner MC5 < 25 - 731 20 457 15 < 44 - < 12	
20/04/2010 S8 5.3 <0,1 Liner MC5 < 25 - <mark>731 20 457 15</mark> < 44 - < 12	
	the state of the s
20/04/2010 S8 7.1 <0,1 Liner MC5 < 32 - 1775 29 167 9 < 48 - 49 6	
20/04/2010 S8 8.4 <0,1 Liner MC5 < 25 - 1261 21 97 6 < 33 - 30 4	. 21 7
20/04/2010 S8 9.9 <0,1 Liner MC5 < 32 - <mark>1989 30 73 6 < 46 - 45 6</mark>	
20/04/2010 S8 11.5 <0.1 Liner MC5 < 39 - 2825 38 131 9 < 49 - 36 6	
20/04/2010 S8 12 - 12,3 <0,1 não registado < 26 - <mark>468 17 312 13 < 48 - 25 5</mark>	< 27 -
Dh. Dh. insenters Co. Co. insenters As As- U., Hg- 7, Zn- W. W- C., Cu- Ni Ni	- Co-
Pb Pb-Incerteza Se Se-Incerteza As incerteza Hg incerteza Zn incerteza W incerteza Cu incerteza Ni incerteza	teza CO incerteza
(mg/kg**)	(g**) (mg/kg**) (mg/kg**)
< 33 - < 22 - < 36 - < 49 - <mark>461 38</mark> < 326 - < 84 - < 214 ·	< 1170 -
<35 - <21 - <35 - <46 - <mark>214 27</mark> <296 - <89 - <247 ·	- 1010
<31 - <18 - <30 - <39 - 130 20 <253 - <84 - <212 ·	< 880 -
< 35 - < 20 - < 30 - < 45 - 192	< 1100 - < 1150 -
	< 750 -
<31 - <22 - <38 - <49 - 318 32 <304 - <92 - <268 ·	
< 36 - < 22 - < 33 - < 49 - 298 33 < 361 - < 93 - < 267 ·	< 1050 -
Cr- V V- TI- C Sc- Ca- K	- S-
	teza S (mg/kg**) incerteza
78300 850 3150 230 <150 - <360 - 5610 230 <85 - 2140 200 5670 41	
98500 940 2240 200 <145 - <320 - 9490 280 <81 - 1880 190 3580 35	
54900 640 1700 160 < 146 - < 390 - 5720 220 < 78 - 2220 200 6850 44 75800 790 2700 210 < 145	
75800 790 2700 210 <145 - <370 - 9090 270 <98 - 8130 320 <720 · 81600 840 3460 230 <143 - <400 - 5620 220 <66 - 740 150 5090 38	
46300 540 1980 150 < 150 - < 340 - 3390 190 < 68 - 640 150 5520 44	
65100 730 2570 200 <151 - <380 - 4310 210 <69 - 550 150 7210 45	o < 51400 -
85800 890 4340 270 < 148 - < 340 - 4250 210 < 66 - 500 140 4980 38	
74400 850 1810 190 < 111 - < 320 - 6620 230 < 97 - 12600 380 4430 37	<mark>0 < 51700 </mark>
To the top of the D	
Ba Ba-incerteza Cs Cs-incerteza Te Te- Sb- Sn- Cd- Ag- Pc (mg/kg**) (mg/kg**	teza
(mg/kg**) (mg/kg	
169 55 <61 - <188 - <67 - <59 - <51 - <35 - <56 -	
<214 - <53 - <164 - <58 - <51 - <44 - <31 - <48 -	
<214 - <53 - <164 - <58 - <51 - <44 - <31 - <48 · <168 - <63 - <193 - <70 - <61 - <52 - <36 - <58 ·	
<168 - <63 - <193 - <70 - <61 - <52 - <36 - <58 <217 - <55 - <168 - <59 - <52 - <44 - <31 - <49	
<168 - <63 - <193 - <70 - <61 - <52 - <36 - <58 <217 - <55 - <168 - <59 - <52 - <44 - <31 - <49 <180 - <46 - <141 - <50 - <44 - <38 - <26 - <41	
<168 - <63 - <193 - <70 - <61 - <52 - <36 - <58 <217 - <55 - <168 - <59 - <52 - <44 - <31 - <49	

ANEXO 4 – Procedimentos Laboratoriais e Respectivos Resultados

۸	valiação	40 (Contominaci	aclas ab ac	Draia da	Vitório	Ilha Terceira	Acoroc
μ	wallacao	ua (Joniaminaca	10 de Solos	– Praia da	viioria.	iina rerceira :	 Acores

ANEXO 4.1 – Relatório de Amostragem

Entidade requisitante Morada	LNEC – Laboratóri Av. Do Brasil, 101,						
Cód. APC	FR 001	Localização	Praia da Vitória, To	erceira, Açores			
Data início colheita (sond)	20/02/2010		Data firm colheita	13/03/2010			
Data colheita am, region.	07/04/2010						
Data início preparação	05/04/2010		Data firm preparação	07/04/2010			
Referência/Local colheita ^t							
Ponto Geomeferenciado ¹ Corgue Egyh 5,1353,731 12 Now, 2009 CPSynap 2760 Cownini							
Responsabilidade colheita	AmbiPar Control, I	Lda,					
Equipa de amostragem	José Morais						
Tipo amostra (s)	Pontual						
Tipo de amostragem	PFQ; Metais; CO;	cov.					
Parâmetros campo	Temperatura						
Normas / Procedimentos			ninação da temperatur amostragem e técnica	e (SMEWWV 2550); EPA 5035; IS s de amostragem;			
Equipamentos							

				rológicas ¹ Meteorologia)			
Discolar asthaitas	Temp.	Temp.	H.R. %	Riela, Vanislavala	Ve	Dan sind as X	
Dia de colheita	Min.ºC	Max. °C		Nebulosidade	Quadrante	Intensidade	Precipitação
			n.a.		п. а.	п. а.	

Caracterização Visual (utilize um visto para indicar a presença)

Designação do ponto de colheita

Ocupação da terra (preencher em percentagem)

Comercial Plantação de cereais

Industrial Vegetação

Parque Cais

Residencial Ågua

Outro

Relva	
Árvores novas	
Årvores velhas	
Árvores de várias idades	
Arbustos	

Caso se verifique a presença d Cheiro da água	e agua, por favor indique:	Aparência da água
Ovos podres	Verde	Substâncias activas (espuma)
Cloro	Amarelada	Resíduos de alcatrão e outros materiais flutuantes.
Esgoto	Barrenta	
Outro	Limmo	

"Referenciado por ponto de amostragem nas folhas de registo em anexo

Nº Identif, Da Foto	Descrição (incluir – nomes, actividades, objectos, etc.)	
DSC00009	Corte superficial do Liner	
DSC00010	Seccionamento da carote por pressão para análises de Metais, MO,	
DSC00017	Seccionamento da carote por pressão para análises de pH, Eh e condutividade	
DSC00018	Preparação da amostra para análise de pH, Eh e condutividade	
DSC00019	Preparação da amostra para análise de pH, Eh e condutividade	
DSC00020	Amostragem com Terra Core para COV	
DSC00023	Amostragem com Terra Core para COV	
DSC00025	Preservação da amostra para a determinação de COV em Vial com Metanol	
DSC00029	Selagem da a mostra em vácuo	
DSC00033	Embalagem e Preservação das amostras congeladas em frio	
DSC00042	Amostras congeladas e preparadas para envío por via aérea em malas térmicas	
DSC00051	Embalagem e Preservação das amostras para COV em frio	
DSC00052	Embalagem e Preservação das amostras para COV em frio	
DSC00067	Local de Amostragem Amostra regional 2	
DSC09081	Amostra regional 2	

Relatório

As carotes extraidas durante as sondagens foram imediatamente condicionadas em campo numa arca de frio com acumula dores térmicos, a uma temperatura inferior a 5°C, no escuro. Em cada 4 horas, foram transportadas e a mazenadas em frigorificos a uma temperatura de -20°C. Esta operação ficou a cargo da Empresa responsável pelas sondagens, Mota-Engil - Direcção de Fundações e Geotecnia, segundo instruções fornecidas pela AmbiPar Control e LNEC.

A preparação e envio das amostras para o laboratório ficou a cargo de José Morais (AmbiPar Control).
No dia 5 de Abril iniciou-se a preparação das amostras para posterior envio a Laboratório. As técnicas utilizadas seguiram as recomendações EPA.
5035, na amostragem de COV a amostra foi obtida através de Terra Core e preservação com Metanol em Vial, para os restantes ensaios optou-se pelo envio de secções congeladas das carotes nos próprios liners. A preparação das amostras ficou concluida durante a manhã do dia 7 de Abril.

A preparação das amostras foi efectuada nas instalações da FRIPRAIA, Empresa sediada na Praia da Vitória, numa antecâmara de frio a uma temperatura compreendida entre os 2 e 5 °C.

Obedeceu aos seguintes critérios:

- O corte superficial do liner contendo a amostra congela da a 20°C foi efectuado com serrote descontaminado (lavagem com Extran ®, água desmineralizada e metanol) quebrando-se posteriormente a carote através de pressão:
 - Para a determinação de Metais, MO, NO₅, SO₄, Fenóis, PAH, PCB e TPH, os troços da carote foram selados com Parafilm @, fechadas nos topos com as tampas dos liners e preservado em saco específico para selagem sob vácuo. As amostras preparadas foram mantidas a uma temperatura de -20°C.
 - Ás amostras para a determinação de pH, Eh e condutividade foram acondicionadas em saco específico para se lagem sob vácuo a uma temperatura de -20°C.
 - iii. Para a a mostragem de COV foram utilizados "Terra Core" descartáveis de 5 g e a amostra extraida das carotes introduzida em Via l\u00e1mbar com tampa de rosca em polipropileno (PP) e septo de silicone PTFE, pre-tarado com 5 ml de Metanol, seguindo a metodologia EPA 5035. As amostras preparadas fora m acondicionadas em sistema de frio a 2ºC.
- Durante o 1º dia de preparação das amostras foi obtido um branco de amostragem ambiental para COV, através da abertura de um Vial pré-tairado com 5 ml de Metanol durante 8 horas, na área utilizada para a preparação das amostras.
- III. No inicio da tarde de 7 de Abril procedeu-se à realização de 2 colheitas de amostras regionais, georreferenciadas em documento anexo. A metodologia seguida encontra-se referenciada na norma ISO 10381.
- Na tarde de dia 7, pelas 16:30 iniciou-se a preparação e acondicionamento das amostras para o transporte por via aérea. As a mostras foram colocadas em maias térmicas desenvolvidas para este tipo de transporte, sob condições de refrigeração. Os viais utilizados na amostragem de COV foram armazenados em caixa de poliestireno com paredes de 30 mm, na qual se introduziu 4 acumuladores frio -18°C. A caixa foi acondicionada nas malas térmicas já referenciadas.
- V. Em todas as malas foram introduzidos ac umuladores térmicos.
- VI. Nas malas térmicas foram introduzidas amostras testemunho com o objectivo de se referencia na temperatura á chegada das amostras. Temperatura inicial 2,3°C.
- VII. As amostras deram entrada no Laboratório durante a tarde de dia 8.
- VIII. As amostra stestemunho para controlo de temperatura colocadas em cada uma das embalagens tinham à chegada, temperaturas inferiores a 1°C.

As análises de pH, condutividade e potencial redox foram efectuados no Laboratório da Químiteste, Engenharia e Tecnología, SA, os restantes ensaios foram realizados na ALS Laboratory Group Czech Republic, Praga.

A data prevista para conclusão das análises é dia 20/04/2010.

Pelo facto de se ter detectado quantidades vestigia is de TCE (tetrachlorgethene) numa grande parte das amostras, inclusivamente no branco de campo, e a fim de se despistar possível contaminação do Metanol, preservante usado para a determinação de COV, foram enviados para o Laboratório 2 Vials com o Metanol, pertencentes ao mesmo lote dos enviados com as amostras. Um dos vials enviados para a nálise permaneceu nas instalações da AmbiPar Control desde a sua preparação, um outro acompanhou a preparação das amostras nos Açores, mas permaneceu selado. Aguarda-se os resultados das análises de TCE (tetrachlorgethene) para se entender a origem dos valores vestigiais encontrados.

Todos as resultados abtidos são enviadas neste documento.

Castro Verde, 12/01/2010

AmbiPar Control, Lda

José Morat (Responsâue l Técnico)

۸	valiação	40 (Contominaci	aclas ab ac	Draia da	Vitório	Ilha Terceira	Acoroc
μ	wallacao	ua (Joniaminaca	10 de Solos	– Praia da	viioria.	iina rerceira :	 Acores

ANEXO 4.2 – Procedimentos de Duplicação de Amostras

ALS Czech Republic,s.r.o. Na Harfe 336/9

Na Harre 336/9 19000 Prague 9

Castro Verde, 07 de Abril de 2010

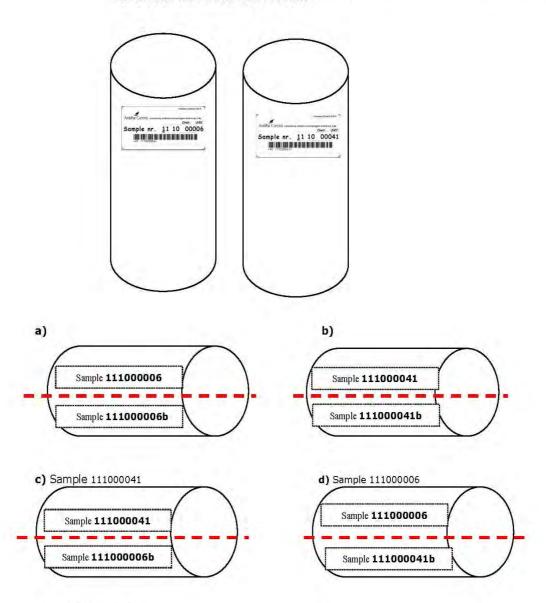
Our/Ref.: AP/100407JM/001P

Your/Ref .:

Matter: Soil replicate analysis for the quality control. Quote Number PT-300-09-0610

Quality Control in the laboratory

In order to maintain the sample heterogeneity, every sample for the quality control needs to be cut lengthwise to form the sub-samples.


Field replicates

Six of the samples collected will need the same procedure above since the liner that will be sent will need to be cut lengthwise to form one sub-sample. The resulting sub-sample from each of the original sample will then be mixed with other sample and have the number of the sample which it will be mixed. Just like explained bellow and in the images.

- The sample number 111000006 will be cut lengthwise and form the sub-sample 111000006b.
- The sample number 111000041 will be cut lengthwise and form the sub-sample 111000041b.
- The sub-sample 111000006b is mixed with 111000041 and the resulting sample will remain with the number 111000041.
- The sub-sample 111000041b is mixed with 111000006 and the resulting sample will remain with the number 111000006.
- The sample number 111000013 will be cut lengthwise and form the sub-sample 111000013b.
- The sample number 111000042 will be cut lengthwise and form the sub-sample 111000042b.
- The sub-sample 111000013b is mixed with 111000042 and the resulting sample will remain with the number 111000042.
- The sub-sample 111000042b is mixed with 111000013 and the resulting sample will remain with the number 111000013.
- The sample number 111000035 will be cut lengthwise and form the sub-sample 111000035b.
- The sample number 111000043 will be cut lengthwise and form the sub-sample 111000043b.
- The sub-sample 111000035b is mixed with 111000043 the resulting sample will remain with the number 111000043.

 The sub-sample 111000043b is mixed with 111000035 the resulting sample will remain with the number 111000035.

Sample preparation

In general, the preparation of samples for environmental analysis of volcanic soils should only contain only a fraction of particles less than 2-3 mm. However, coarse soils, consisting in elements larger than 5 mm (over 80%), any size should be considered, adjusting the analytical practices for the effect.

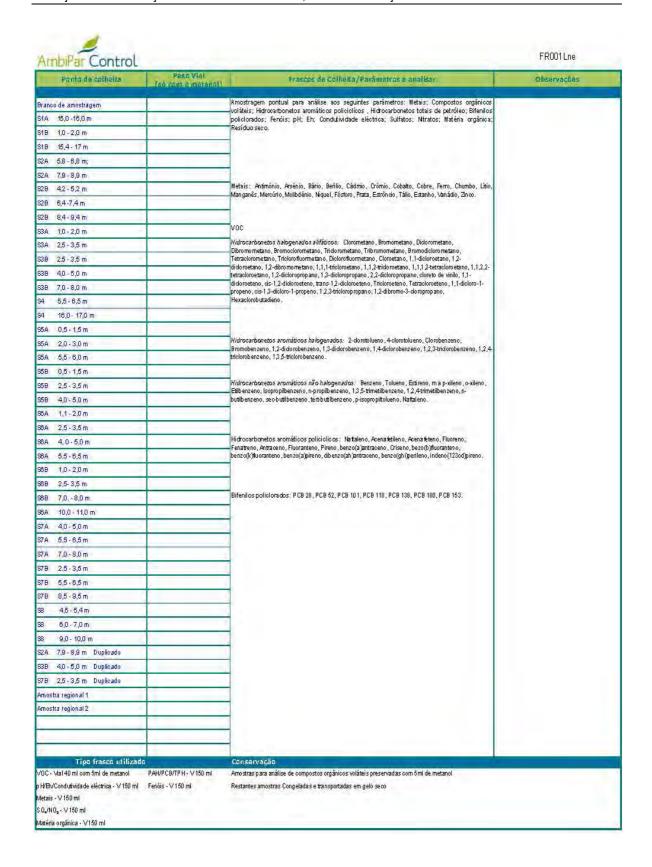
Analysis report (reminder)

There should be the following records:

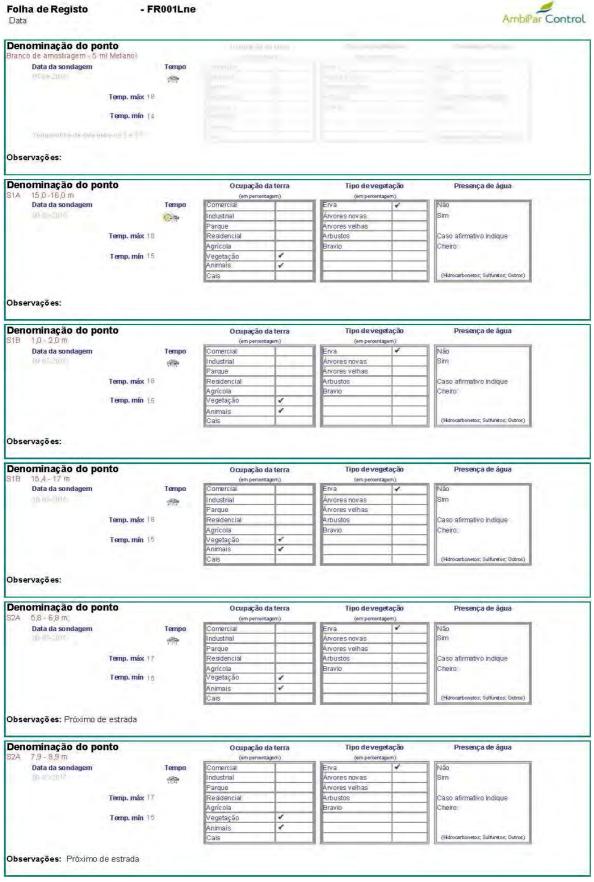
- a) Laboratory Identification
- b) Sample Identification
- c) Date and time of receipt
- d) Date of preparation and packaging
- e) Identification of the person who received the samples
- f) Temperature of the control sample
- g) Matrix
- h) Sample Type (blank / replicate / sample)
- i) Type of container (vial, bottle, bag, liner, etc)
- j) Sample volume (weight)
- k) Preservation (refrigeration, methanol, acid, etc.).
- I) Date / Time of preparation and analysis Start
- m) Date / Time Analysis End
- n) Methodology
- o) Number of analysis held on the same replica
- p) Results

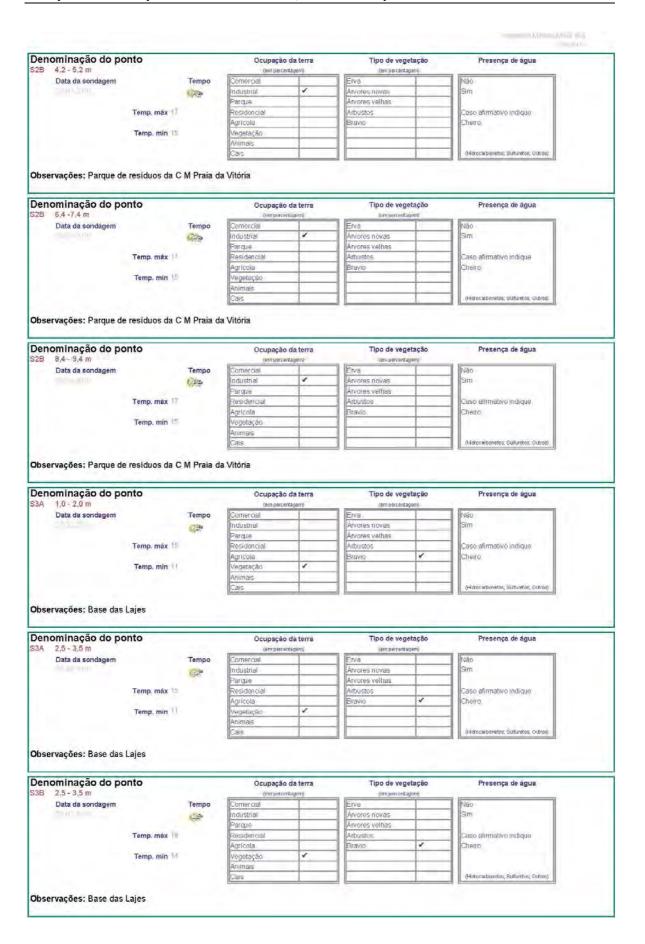
Best regards

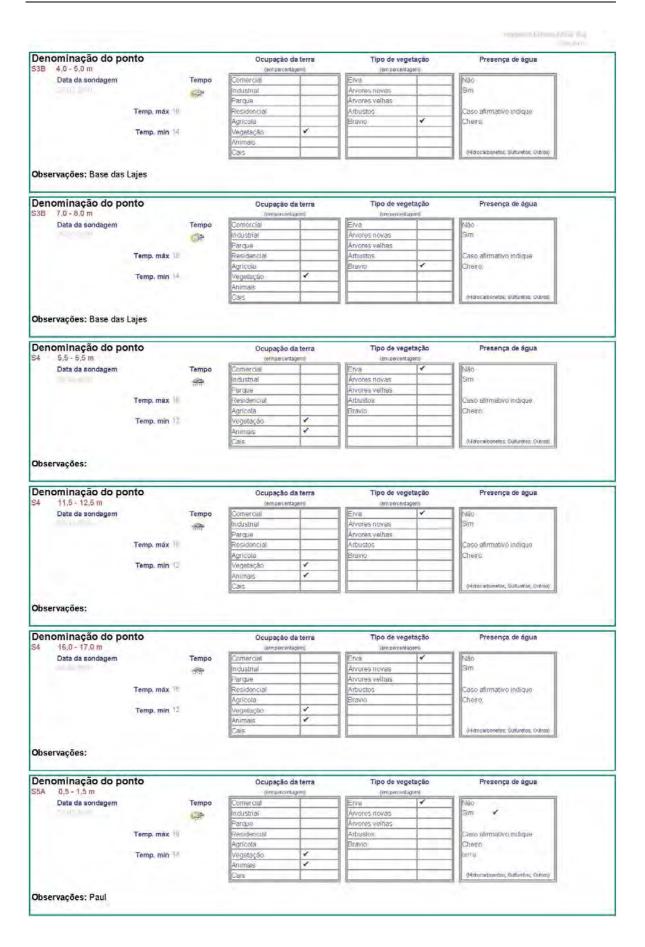
AmbiPar Control, Lda

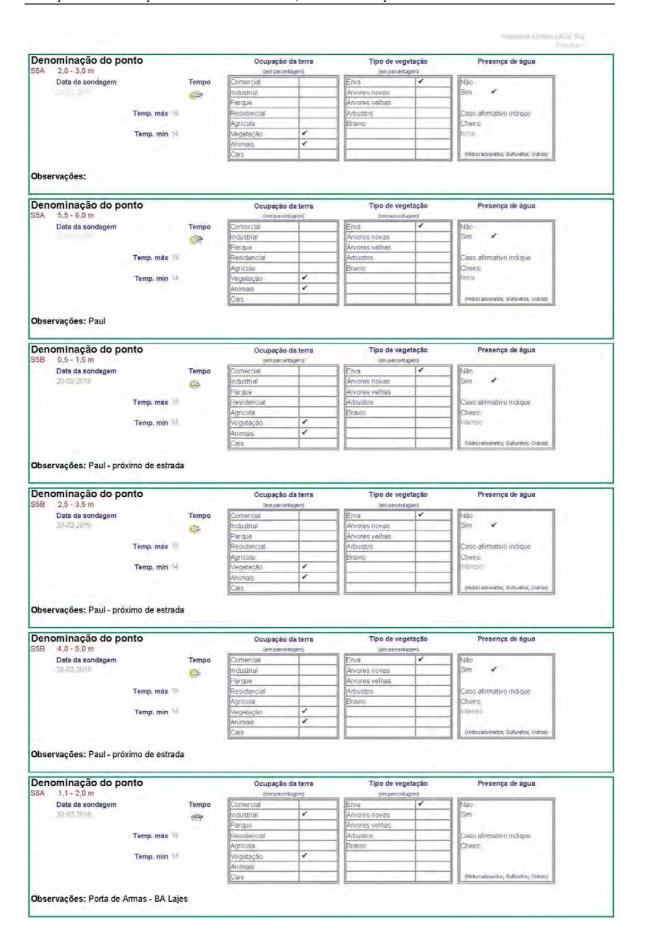


Pedro Miguel Cordeiro Morais

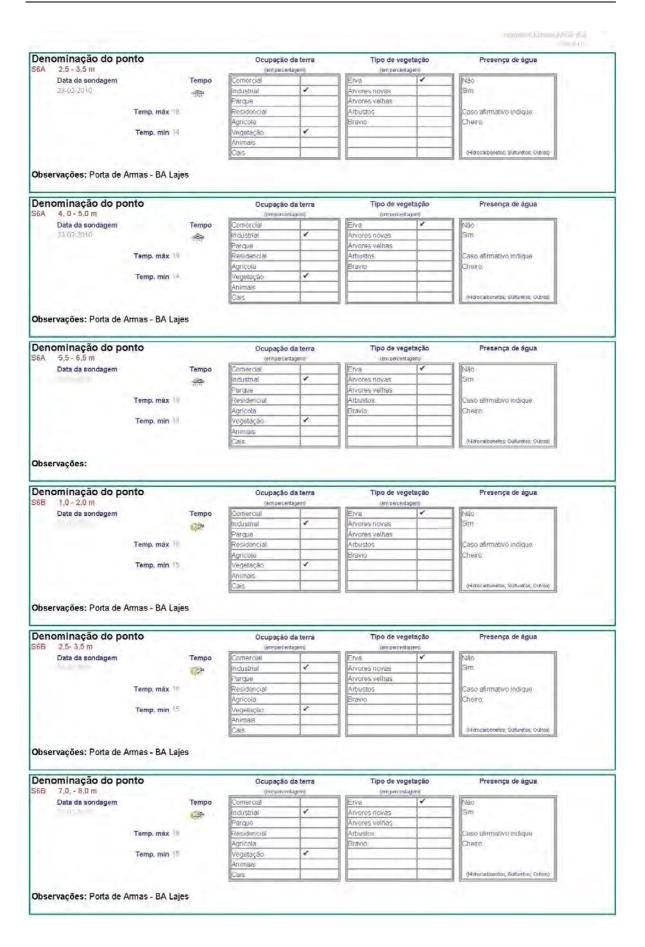

Avaliação da Contaminação de Solos – Praia da Vitória, Ilha	Terceira – Açores
	ANEXO 4.3 – Folhas de Registo
	_

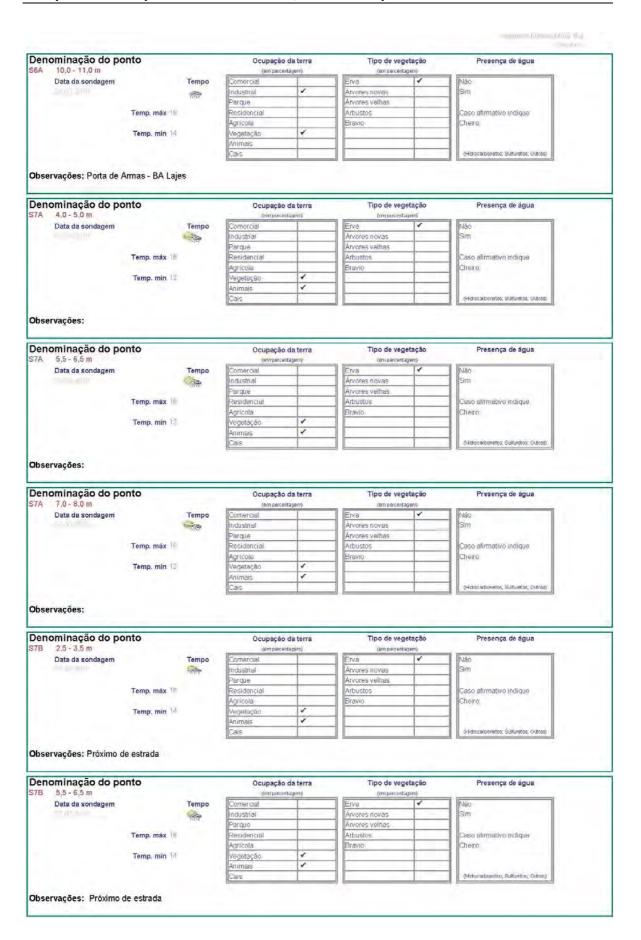

Ponto de colh	eita Coordenadas	Amostra m ^b	Tipo Amostragem	Matriz	Data de carotagem	Peso Amostra aproximado (g)	Hora acontilcion.	Data	pH Escala Scrensen	Redox	Condultividade	Téa
Designação Branco de amostragem	Coordenadas								Estada Sorevised	11192	Teston	
		111000001	Pontual	W								José I
S1A 15,0-16,0 m	M=492132.803 P=4287048.734	111000002	Pontual	Š	9-Mar-10	Outros 495 Electroq ±150 VOC ±5	11:20	05-04-2010	7.0	106	<30	José
S1B 1,0 - 2,0 m	M=492165,859 P=4287098.904	111000003	Pontual	s	9-Mar-10	Outros 658 Electroq ±150 VOC ±5	11:45	05-04-2010	7,0	103	<30	José
S1B 15,4 - 17 m	M=492165.859 P=4287098.904	111000004	Pontual	S	10-Mar-10	Outros 659 Electroq ±150 VOC ±5	12:20	05-04-2010	7,1	97	<30	José
S2A 5,8-6,8 m;	M=492686.452 P=287594.143	111000005	Pontual	s	6-Mar-10	Outros 620 Electroq ±150 VOC ±5	14:15	05-04-2010	7,1	87	<30	José I
S2A 7,9-8,9 m	M=492686.452 P=287594.143	111000006	Pontual	s	6-Mar-10	Outros 702 Electroq ±150 VOC ±5	14:52	05-04-2010	7,2	121	<30	José f
S2B 4,2 - 5,2 m	M=492784.315 P=4287680.893	111000007	Pontual	s	5-Mar-10	Outros 1111 Electroq ±150 VOC ±5	15:26	05-04-2010	6,9	103	<30	José f
S2B 6,4-7,4 m	M=492784 315 P=4287680.893	111000008	Pontual	s	5-Mar-10	Outros 939 Electroq ±150 VOC ±5	15:48	05-04-2010	6,8	131	<30	José I
S2B 8,4 - 9,4 m	M=492784.315 P=4287680.893	111000009	Pontual	s	5-Mar-10	Outros 999 Electroq ±150 VOC ±5	16;21	05-04-2010	6,6	109	<30	José I
S3A 1,0 - 2,0 m	M=493074.105 P=4289002.991	111000010	Pontual	s	27-Fev-10	Outros 593 Electroq ±150 VOC ±5	16:52	05-04-2010	7,0	81	<30	José I
S3A 2,5-3,5 m	M=493074.105 P=4289002.991	111000011	Pontual	s	27-Fev-10	Outros 535 Electroq ±150 VOC ±5	17:15	05-04-2010	7,2	92	<30	José
S3B 2,5-3,5 m	M=493113.056 P=4288993.259	111000012	Pontual	S	25-Fey-10	Outros 569 Electroq ±150 VOC ±5	17:45	05-04-2010	7,0	103	<30	José
S3B 4,0-5,0 m	M=493113.056 P=4288993.259	111000013	Pontual	s	25-Fev-10	Outros 566 Electroq ±150 VOC ±5	18:14	05-04-2010	6,4	109	<30	José
S3B 7,0-8,0 m	M=493113.056 P=4288993.259	111000014	Pontual	s	25-Fev-10	Outros 600 Electroq ±150 VOC ±5	18:39	05-04-2010	7,5	133	<30	José
S4 5,5 - 6,5 m	M=491489.365 P=4286995.111	111000015	Pontual	s	3-Mar-10	Outros 910 Electroq ±150 VOC ±5	8:32	06-04-2010	6,6	102	<30	José
S4 11,5 - 12,5 m	M=491489.365 P=4286995.111	111000016	Pontual	s	3-Mar-10	Outros 857 Electroq ±150 VOC ±5	8:59	06-04-2010	6,8	88	<30	José
S4 16,0 - 17,0 m	M=491489.365 P=4286995.111	111000017	Pontual	S	3-Mar-10	Outros 857 Electroq ±150 VOC ±5	9:35	06-04-2010	7,5	91	<30	José I
S5A 0,5 - 1,5 m	M=494494.860 P=4287565.862	111000018	Pontual	Ś	22-Fev-10	Outros 680 Electroq ±150 VOC ±5	10:12	06-04-2010	7,8	106	33	José t
S5A 2,0 - 3,0 m	M=494494.860 P=4287565.862	111000019	Pontual	s	22-Fev-10	Outros 558 Electroq ±150 VOC ±5	10:47	06-04-2010	6,9	71	43	José I
S6A 5,5 - 6,0 m	M=494494.860 P=4287565.862	111000020	Pontual	s	22-Fev-10	Outros 677 Electroq ±150 VOC ±5	11:18	06-04-2010	7,7	87	34	José t
S58 0,5 - 1,5 m	M=494571.105 P=4287582.080	111000021	Pontual	s	20-Fev-10	Outros 649 Electroq ±150 VOC ±5	11:49	06-04-2010	7,9	59	60	Jösé I
S5B 2,5 - 3,5 m	M=494571.105 P=4287582.080	111000022	Pontual	S	20-Fey-10	Outros 724 Electroq ±150 VOC ±5	12:22	06-04-2010	8,2	130	41	José t
S5B 4,0 - 5,0 m	M=494571.105 P=4287582.080	111000023	Pontual	s	20-Fev-10	Outros 899 Electroq ±150 VOC ±5	14:32	06-04-2010	7,5	122	<30	José i
S6A 1,1 - 2,0 m	M=493479.495 P=4289472.039	111000024	Pontual	s	23-Fev-10	Outros 644 Electroq ±150 VOC ±5	14:58	06-04-2010	7,4	86	<30	José I
S6A 2,5 - 3,5 m	M=493479.495 P=4289472.039	111000025	Pontual	s	23-Fev-10	Outros 689 Electroq ±150	15:30	06-04-2010	7,7	72	<30	José

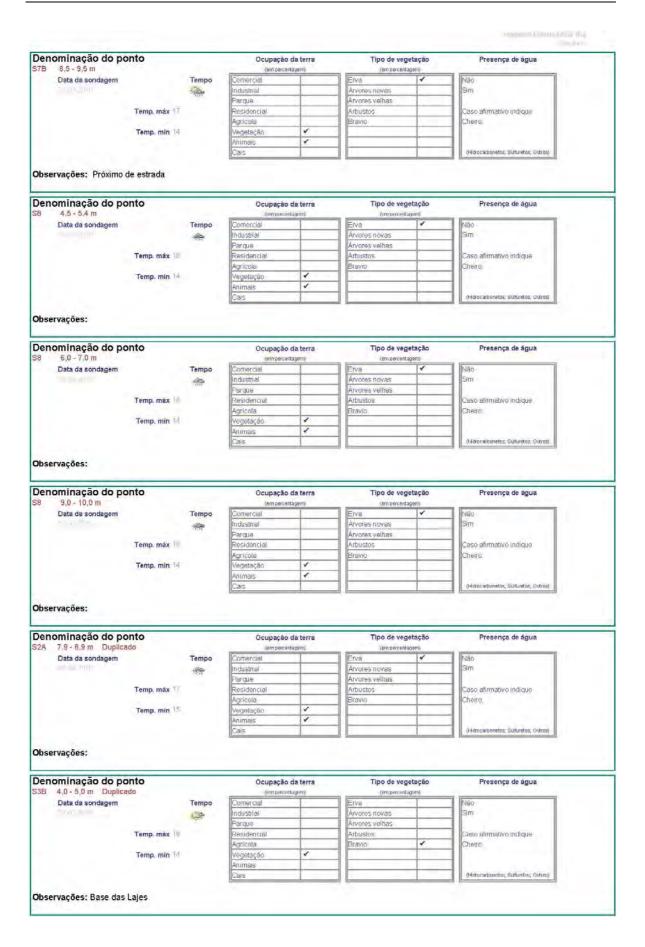

Side 3.5 - 6.5 m		M=493479.495 P=4289472.039	1				Outros 607						1
## 1000000 Probable S 25 Feb O Discrete S O Discrete			111000026	Pontual	S	23-Fey-10	VOC ±5	15:52	06-04-2010	6,7	113	<30	José Mora
Professional Color Professional Section Professional Section Sec	S6A 5,5-6,5 m		111000027	Pontual	s	23-Fev-10	Electroq ±150	16:28	06-04-2010	7,4	151	<30	José Mon
Sept 2,5-3.5 m	S6B 1,0 - 2,0 m	M=493511.980 P=4289400.206	111000028	Pontual	s	24-Fev-10	Electroq ±150	16,57	06-04-2010	7,1	107	<30	José Mon
See 7,0 - 9,0 m	S6B 2,5-3,5 m	M=493511.980 P=4289400.206	111000029	Pontual	s	24-Fev-10	Outros 705	17:21	06-04-2010	7,4	109	<30	José Mora
Section 100	S6B 7,0, - 8,0 m	M=493511.980 P=4289400.206	111000030	Pontual	s	25-Fev-10	Outros 658	17:51	06-04-2010	7,1	128	34	José Mor
VOC 45 V	S6A 10,0 - 11,0 m	M=493479,495 P=4289472,039	111000031	Peritual	5	23 Ew. 10	Outros 669	18:99	06.04.2010	7.0	103	<30	Jack Man
11000032 Premist S 2.46x-10 Electron at 50 C. 2.46x-10 Electron at 50 Electron a	S7A 4,0 - 5,0 m	M=492972.095 P=4288645.099	111000051	ruttual	3	231 64-10	VOC ±5	10.02	00-04-2010	7,0	100	300	Juse Will
Part	974 55-85m		111000032	Pontual	S	2-Mar-10	VOC ±5	8:35	07-04-2010	7,1	105	<30	José Mor
P-489645999 111000034 Pentsal S 2/Mar-10 Electroq 4150 9:32 07-04-2010 7:1 97 <30 José N VOC 45 VOC 4		P=4288645.099	111000033	Pontual	s	2-Mar-10	Electroq ±150	9:12	07-04-2010	6,8	109	<30	José Mor
Published Research Publish	S/A 7,U-8,0 m	P=4288645.099	111000034	Pontual	S	2-Mar-10	Electroq ±150	9:32	07-04-2010	7,1	97	≪30	José Mor
STB S,5 - 6,5 m P-420947 002 111000036 Penhall S 27-Fev-10 Electroq ±150 10.26 D7-04-2010 6,4 121 <30 José h D/04-2010 5,4 D/04-2010 6,6 D7-04-2010 6,6 D7-04-2010 D/04-2010 D/0	S78 2,5 - 3,5 m	M=492928.674 P=4288647.062	111000035	Pontual	s	27-Fev-10	Electroq ±150	9:59	07-04-2010	6,9	88	<30	José Moi
Second S	S7B 5,5 - 6,5 m	M=492928.674 P=4288647.062	111000036	Pontual	s	27-Fev-10	Outros 562 Electroq ±150	10:26	07-04-2010	6,4	121	<30	José Moi
Section Sect	S7B 8,5 - 9,5 m		111000037	Pontual	s	1-Mar-10	Outros 502 Electroq ±150	10:39	07-04-2010	6,6	130	<30	José Moi
S8 6,0 - 7,0 m	S8 4,5 - 5,4 m	M=491199.699 P=4287049.936	111000038	Pontual	s	13- Mar-10	Outros 506 Electroq ±150	11:02	07-04-2010	6,5	88	<30	José Mor
SS 9,0 - 10,0 m	S8 6,0 - 7,0 m	M=491199,699 P=4287049,936	111000039	Pontual	S	13-Mar-10	Outros 661	11:29	07-04-2010	6,6	97	<30	José Mor
SZA 7,9 = 8,9 m Duplicado	S8 9,0 - 10,0 m	M=491199.699 P=4287049.936	111000040	Pontual	S	13-Mar-10	Outros 808	12:00	07-04-2010	7,1	118	<30	José Mor
S3B 4,0 - 5,0 m			111000041	Pontual	s	6-Mar-10	Outros 632	14:52	05-04-2010	7,3	111	<30	José Mor
VOC ±5 S78 2,5-3,5 m		M=493113.056 P=4288993.259	111000042	Pontual	s	25-Fev-10	Outros 687	18:14	05-04-2010	64	97	<30	José Mor
Amostra regional 1 38°49′2,92°N 27°9′319,89° W 111000044 Pontual S 7.Abr-10 Electroq ±150 9:59 07-04-2010 5;9 96 <30 Jose N VOC ±5 VO		M=492928.674 P=4288647.062	W 12.702				VOC ±5 Outros 657						
111000044 Pontual S 7-Abr-10 Electrog ±150 13:35 07-04-2010 7,3 121 76 José h VOC ±5		38° 44' 2,92" N 27° 3' 18 68' W	111000043	Pontual	S	27-Fev-10	VOC ±5	9:59	07-04-2010	6,9	96	<30	José Mor
27°5 22,98°W	Amostra regional 2	38° 43' 3.97" N	111000044	Pontual	S	7-Abr-10	VOC ±5	13,35	07-04-2010	7,3	121	76	José Mor
VOC ±5	740	27° 5' 22,09" W	111000045	Pontual	s	7-Abr-10	Electroq ±150	15:12	07-04-2010	7,1	98	<30	José Mor

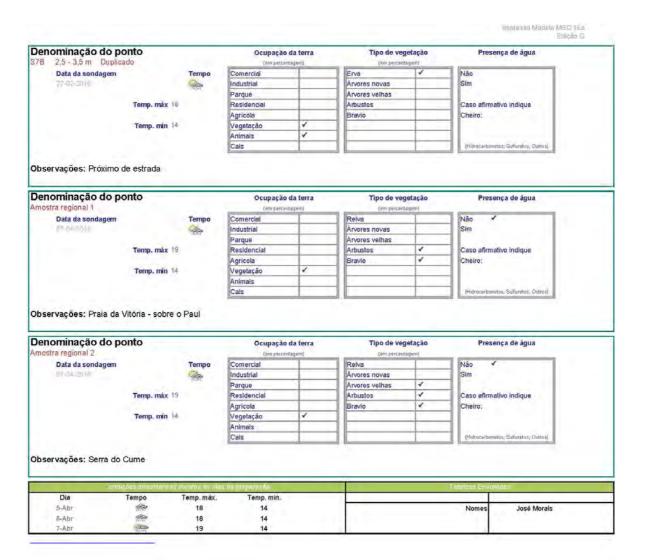


Hinpressa Madela MSQ 16a Edição G









165

ANEXO 4.4 – Notificação da Recepção de Amostras e Confirmação das Análises Solicitadas

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Europe Region

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	PR1	010185	Issue Date	12-A	PR-2010	18:26			
Client		Par Control - Consultoria,	Laboratory	: ALS	Czech	Republic, s.r.	0.		
Contact		ses e Amostragem Ambient sé Morais	Contact	: Clier	nt Service	e			
Address		ado 34 o Verde Portugal 7780 - 909	Address		Harfe 336/9 Prague 9 - Vysocany ech Republic 190 00				
E-mail	: jose.n	norais@ambiparcontrol.pt	E-mail	: cust	customer.support@alsglobal.com				
Telephone	+351	2 863 28318	Telephone	= +42	420 284 081 645				
Facsimile :			Facsimile	+42	20 284 081 635				
Project : Analises quimicas de solos e de aquas subterraneas		Page	1 of	3					
Order number	: AP/10	00407JM/001P							
C-O-C number	(meter		Quote number	: PR2	010AM	BCO-PT0001			
Site									
Sampler	-		QC Level	= ALS	CR edule	Standard	Quality	Control	
Dates									
Date Samples Reco	eived	08-APR-2010							
Client Requested D	Due Date	: 20-APR-2010	Scheduled Reporti	ng Date	20	APR-2010			
Delivery Deta	ails								
Mode of Delivery		Carrier	Temperature		: <1	°C			
No. of coolers/boxe	S	2	No. of samples rec	eived	: 45				
Sercurity Seal		Yes	No. of samples analysed		45				

General Information

Thank you for your order.

This is a notification only and requires no action on your part, it:

- confirms receipt of the samples listed below
- notifies the requested / scheduled due date
- notifies the sample's temperature at the moment of receipt
- notifies the sample container(s)/preservation non-compliances
- shows requested deliverables
- provides summary of sample(s) and requested analysis

Please contact ALS Client Service if you have any enquires.

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group
Na Hufe 3569 Frague 9 - Vysocary Czech Republic 190 00
Tel. +420 284 081 685 Fax +620 284 081 655 www.alsenviro.com
A Campbell Brothers Limited Company.

Issue Date 12-APR-2010 18:26

Page 2 of 3

Work Order
Client AmbiPar Control - Consultoria, Análises e Amostragem Ambient

Requested Deliverables

Hana Svobodová		
- Interpretive QC report	E-mail	hana.svobodova@alsglobal.com
- Quality Control Report	E-mail	hana.svobodova@alsglobal.com
- Sample Receipt Notification	E-mail	hana.svobodova@alsglobal.com
Ivan Tresl		
- Interpretive QC report	E-mail	ivan.tresl@alsglobal.com
- Quality Control Report	E-mail	ivan.tresl@alsglobal.com
- Sample Receipt Notification	E-mail	ivan.tresl@alsglobal.com
Mr Bruno Granger		
- Invoice	E-mail	bruno.granger@alsglobal.com
- Sample Receipt Notification	E-mail	bruno.granger@alsglobal.com
Mr José Morais		
- Invoice	E-mail	jose.morais@ambiparcontrol.pt
- Invoice	Print	Mr José Morais
- Sample Receipt Notification	E-mail	jose.morais@ambiparcontrol.pt
- EDI Format - XTab	E-mail	iose.morais@ambiparcontrol.pt

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment / preservation ISO, APHA, US EPA standards.

· No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of dry matter and preparation tasks, that are included in the package. Detailed information is available on ALS Laboratory Group Webtrieve (for egistered clients only). Matrix: SOIL Laboratory sample ID: Client sample ID	SOIL - S-LISSOGR Loss on ignition and ignition residue (550 °C)	SOIL - S-METAXHB1 Hot block excretable metals by CP-OES-AX - group 1	SOIL - S-NO3-SPC Nitrates (NO3) by calculation	SOIL - S-PAHPCBTPH PAH(16), PCB(7) and TPH(C10-C40)	SOIL - S-PHI-PHO Phenol index by photometry	SOIL - S-SO4-GR Sulphates (SO4) by gravimetry	SOIL - S-VOC Volatile organic comp. (EPA 8260)
PR1010185001 : 111000001 Sample blank for VOC							1
PR1010185002 : 111000002	1	1	1	1	1	v	1
PR1010185003 : 111000003	V.	1	4	V	1	1	V
PR1010185004 : 111000004	1	2	1	V	V	1	1
PR1010185005 : 111000005	1	1	1	V	4	14	V.
PR1010185006 : 111000006 (1/2 111000006+1/2 1	1	4	1	1	1	1	1
PR1010185007 : 111000007	1	1	1	1	1	1	1
PR1010185008 : 111000008	1	1	1	1	1	1	1
PR1010185009 : 111000009	1	1	1	1	1	1	1
PR1010185010 : 111000010	1	V.	1	1	1	1	1
PR1010185011 : 111000011	1		1	1	1	1	1
PR1010185012 : 111000012	1	V	1	1	1	1	1
PR1010185013 : 111000013 (1/2 111000013+1/2 1	1	1	1	1	1	1	1
PR1010185014 : 111000014	1	1	1	1	1	1	1
PR1010185015 : 111000015	1	1	1	1	1	1	1
PR1010185016 : 111000016	1	1	1	1	1	1	1
PR1010185017 : 111000017	1	1	V	1	1	1	1
PR1010185018 : 111000018	1	1	1	1	1	1	1
PR1010185019 : 111000019	1	1	1	V	1	1	1

Issue Date 12-APR-2010 18:26

Page 3 of 3 Work Order

Client AmbiPar Control ¿ Consultoria, Análises e Amostragem Ambient

	SOIL - S-LISSOGR Loss on ignition and ignition residue (550 °C)	SOIL - S-METAXHB1 Hot block excractable metals by IPP OFES AX money	SOIL - S-NO3-SPC Nitrates (NO3) by calculation	SOIL - S-PAHPCBTPH PAH(16), PCB(7) and TPH(C10-C40)	SOIL - S-PHI-PHO Phenol index by photometry	SOIL - S-SO4-GR Sulphates (SO4) by gravimetry	SOIL - S-VOC Volatile organic comp. (EPA 8260)
PR1010185020 ; 111000020	1	1	1	1	1	1	1
PR1010185021 : 111000021	1	1	1	V	V	1	1
PR1010185022 : 111000022	1	4	1	1	1	1	1
PR1010185023 : 111000023	1	1	1	1	1	1	1
PR1010185024 ; 111000024	1	~	1	1	1	1	1
PR1010185025 : 111000025	1	V	1	V	1	1	V.
PR1010185026 : 111000026	1	1	1	1	1	1	1
PR1010185027 : 111000027	1	1	1	1	1	1	1
PR1010185028 : 111000028	1	1	1	1	1	1	1
PR1010185029 ; 111000029	1	1	1	1	1	1	1
PR1010185030 : 111000030	1	1	1	1	1	1	1
PR1010185031 : 111000031	1	1	1	1	1	1	1
PR1010185032 ; 111000032	1	1	1	1	1	1	1
PR1010185033 : 111000033	1	1	1	1	1	1	1
PR1010185034 : 111000034	1	1	1	1	1	1	1
PR1010185035 : 111000035 (1/2 111000035+1/2 1	1	1	~	V	1	1	V
PR1010185036 : 111000036	1	~	1	1	1	1	1
PR1010185037 : 111000037	1	1	1	1	1	1	V
PR1010185038 : 111000038	1	1	1	1	1	1	1
PR1010185039 : 111000039	1	1	1	V	V	1	1
PR1010185040 : 111000040	1	1	4	1	1	1	1
PR1010185041 : 111000041 Duplicate (2/2 111000	V	1	1	1	1	1	V
PR1010185042 : 111000042 Duplicate (2/2 111000	V	1	1	1	1	1	1
PR1010185043 : 111000043 Duplicate (2/2 111000	1	1	1	V	1	1	1
PR1010185044 : 111000044 Regional sample	1	1	~	1	1	1	1
PR1010185045 : 111000045 Regional sample	1	V	1	1	1	1	1

Avaliação da Contaminação de Solos – Praia da Vitória, Ilha Terceira – Açores	
·	

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division - Europe

QUALITY CONTROL REPORT

Work Order	PR1010185	Page	: 1 of 16
Amendment	:1		
Client	: AmbiPar Control, LDa.	Laboratory	: ALS Czech Republic, s.r.o.
Contact	: Jose Morais	Contact	: Client Service
Address	: Apartado 34	Address	: Na Harfe 336/9 Prague 9 - Vysocany Czech Republic 190 00
	Castro Verde Portugal 7780 z 909		
E-mail	; jose.morais@ambiparcontrol.pt	E-mail	customer.support@alsglobal.com
Telephone		Telephone	: +420 284 081 645
Facsimile		Facsimile	: +420 284 081 635
Project	: Analises quimicas de solos e de aquas subterraneas na	QC Level	: ALS CR Standard Quality Control Schedule
	regiao do graben das Lajes		
Site	1		
C-O-C number	V - 11 -	Date Samples Received	: 08-APR-2010
Sampled by	· ·	Issue Date	: 21-APR-2010
Order number	: AP/100407JM/001P		
		No. of samples received	: 45
Quote number	PT-300-09-0610	No. of samples analysed	: 45

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Testing Laboratory Accredited by CAI

Signatorie

This document has been electronically signed by the authorized signatories indicated below.

Signatories Position
Emilie Pokorna Quality Manager

Page : 2 of 16

Work Order : PR1010185 Amendment 1
Client : AmbiPar Control, LDa.

Project : Analises quimicas de solos e de aquas subterraneas na regiao do graben das Lajes

ALS

General Comments

The analytical procedures used by ALS have been developed from established internationally recognized procedures such as those published by the USEPA, ISO, CEN and APHA. In house developed procedures are employed in the absence of documented standards or by client request.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting (LOQ of analytical method or higher)

RPD = Relative Percentage Difference

= Indicates failed QC

Page 3 of 16

Work Order PR1010185 Amendment 1
Client AmbiPar Control, LDa.

Project Analises quimicas de solos e de aquas subterraneas na regiao do graben das Lajes

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample homogeneity. The permitted ranges for the Relative Percentage Difference (RPD) of Laboratory Duplicates are specified in internal ALS documents.

Sub-Matrix: SOIL						Laboratory Duplicate (D	UP) Report	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%
Physical Parameters	(QC Lot: 1310015)							
PR1010185-003	111000003	S-DRY-GRCI: Dry matter @ 105°C		0.10	%	62.3	62.8	8.0
Physical Parameters	(QC Lot: 1310016)							
PR1010185-045	111000045 Regional	S-DRY-GRCI: Dry matter @ 105°C		0.10	%	52.8	52.6	0.5
	sample				2.5			
Physical Parameters	The second secon	The second secon						
PR1010185-002	111000002	S-LI550GR: Loss on Ignition @ 550°C		0.10	% DW	6.08	6.20	2.0
	Name of the last o	0-Elosodik. Edas diriginadir @ 550 C					7.77	
Physical Parameters PR1010185-022	111000022	C LISEOOD, Land on Londing & SEON		0.10	% DW	6.00	5.78	3.7
		S-LI550GR: Loss on Ignition @ 550°C		0.10	70 DVV	0.00	3.76	5.7
Physical Parameters	Name of Street or other Designation of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, wh	To the same of the		0.40	0/ 5/4/	5.04	5.00	
PR1010185-042	111000042 Duplicate (2/2	S-LI550GR: Loss on Ignition @ 550°C		0.10	% DW	5.21	5.66	8.3
	111000013+2/2							
American Science and Co.	111000042)							
Agregate Parameter	CONTRACTOR				T			
PR1010185-011	111000011	S-PHI-PHO: Phenol Index		0.20	mg/kg DW	<0.20	<0.20	0.0
PR1010185-044	111000044 Regional	S-PHI-PHO: Phenol Index		0.20	mg/kg DW	0.37	0.37	0.0
	sample							
Agregate Parameter:	AND DESCRIPTION OF THE PERSON							
PR1010362-009	Anonymous	S-PHI-PHO: Phenol Index	****	0.20	mg/kg DW	4.92	4.92	0.0
Nonmetallic Inorgan	ic Parameters (QC Lot: 13	16956)						
PR1010185-002	111000002	S-SO4-GR: Sulphate as SO4 2-	14808-79-8	0.10	% DW	0.24	0.26	5.2
Nonmetallic Inorgan	ic Parameters (QC Lot: 13	16957)						
PR1010185-022	111000022	S-SO4-GR: Sulphate as SO4 2-	14808-79-8	0.10	% DW	<0.10	<0.10	0.0
Nonmetallic Inorgan	ic Parameters (QC Lot: 13	16958)						
PR1010185-042	111000042 Duplicate (2/2	S-SO4-GR: Sulphate as SO4 2-	14808-79-8	0.10	% DW	0.12	0.12	0.0
	111000012 Ediplicate (2/2		(1)223 (7.5)		41.61	2112	13,137	- 15
	111000042)							
Extractable Metals /	Major Cations (QC Lot: 13	11571)	7.7					
PR1010185-003	111000003	S-METAXHB1: Beryllium	7440-41-7	0.010	mg/kg DW	5.28	5.23	1.0
		S-METAXHB1: Strontium	7440-24-6	0.10	mg/kg DW	133	134	0.8
		S-METAXHB1: Vanadium	7440-62-2	0.10	mg/kg DW	45.1	43.1	4.4
		S-METAXHB1: Barium	7440-39-3	0.20	mg/kg DW	276	271	1.7
		S-METAXHB1: Cobalt	7440-48-4	0.20	mg/kg DW	15.9	15.5	2.9
		S-METAXHB1: Mercury	7439-97-6	0.20	mg/kg DW	<0.20	<0.20	0.0
		S-METAXHB1: Cadmium	7440-43-9	0.40	mg/kg DW	<0.40	<0.40	0.0
		S-METAXHB1: Molybdenum	7439-98-7	0.40	mg/kg DW	5.51	5.42	1.6
		S-METAXHB1: Antimony	7440-36-0	0.50	mg/kg DW	0.72	1.15	46.0

4 of 16 PR1010185 Amendment 1 Work Order Client AmbiPar Control, LDa.

Project Analises quimicas de solos e de aquas subterraneas na regiao do graben das Lajes

Sub-Matrix: SOIL						Laboratory Duplicate (D	UP) Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
xtractable Metals /	Major Cations (QC Lo	t: 1311571) - continued						
PR1010185-003	111000003	S-METAXHB1: Arsenic	7440-38-2	0.50	mg/kg DW	8.73	8.84	1.2
	77-0308	S-METAXHB1: Chromium	7440-47-3	0.50	mg/kg DW	10.3	9.94	3.3
		S-METAXHB1: Manganese	7439-96-5	0.50	mg/kg DW	2180	2160	0.9
		S-METAXHB1: Silver	7440-22-4	0.50	mg/kg DW	<0.50	<0.50	0.0
		S-METAXHB1: Thallium	7440-28-0	0.50	mg/kg DW	< 0.50	<0.50	0.0
		S-METAXHB1: Copper	7440-50-8	1.0	mg/kg DW	10.9	10.7	1.6
		S-METAXHB1: Lead	7439-92-1	1.0	mg/kg DW	8.8	8.9	1.3
		S-METAXHB1: Lithium	7439-93-2	1.0	mg/kg DW	23.5	23.1	1.8
		S-METAXHB1: Nickel	7440-02-0	1.0	mg/kg DW	8.4	8.3	1.8
		S-METAXHB1: Tin	7440-31-5	1.0	mg/kg DW	2.7	2.8	0.0
		S-METAXHB1: Iron	7439-89-6	10	mg/kg DW	61100	59800	2.1
		S-METAXHB1: Zinc	7440-66-6	3.0	mg/kg DW	367	366	0.1
		S-METAXHB1: Phosphorus	7723-14-0	5.0	mg/kg DW	854	844	1.2
PR1010185-036	111000036	S-METAXHB1: Beryllium	7440-41-7	0.010	mg/kg DW	4.18	4.22	8,0
	1.04.43	S-METAXHB1: Strontium	7440-24-6	0.10	mg/kg DW	30.7	31.0	1.1
		S-METAXHB1: Vanadium	7440-62-2	0:10	mg/kg DW	80.5	80.5	0.04
		S-METAXHB1: Barium	7440-39-3	0.20	mg/kg DW	76.1	76.8	1.0
		S-METAXHB1: Cobalt	7440-48-4	0.20	mg/kg DW	12.7	13.0	2.3
		S-METAXHB1: Mercury	7439-97-6	0.20	mg/kg DW	<0.20	<0.20	0.0
		S-METAXHB1: Cadmium	7440-43-9	0.40	mg/kg DW	<0.40	<0.40	0.0
		S-METAXHB1: Molybdenum	7439-98-7	0.40	mg/kg DW	3.92	3.83	2.4
		S-METAXHB1: Antimony	7440-36-0	0.50	mg/kg DW	<0.50	<0.50	0.0
		S-METAXHB1: Arsenic	7440-38-2	0.50	mg/kg DW	9.62	9.67	0.5
		S-METAXHB1: Chromium	7440-47-3	0.50	mg/kg DW	5.04	5.40	6.8
		S-METAXHB1: Manganese	7439-96-5	0.50	mg/kg DW	1640	1660	1.3
		S-METAXHB1: Nidnigariese	7440-22-4	0.50	mg/kg DW	<0.50	<0.50	0.0
		S-METAXHB1: Thallium	7440-28-0	0.50	mg/kg DW	<0.50	<0.50	0.0
		S-METAXHB1: Copper	7440-50-8	1.0	mg/kg DW	7.0	7.0	0.0
		S-METAXHB1: Lead	7439-92-1	1.0	mg/kg DW	7.6	7.5	2.0
		S-METAXHB1: Lithium	7439-93-2	1.0	mg/kg DW	23.3	23.4	0.5
		S-METAXHB1: Nickel	7440-02-0	1.0	mg/kg DW	5.6	6.5	15.2
		S-METAXHB1: Tin	7440-31-5	1.0	mg/kg DW	<1.0	<1.0	0.0
		S-METAXHB1: Iron	7439-89-6	10	mg/kg DW	41800	41800	0.2
		S-METAXHB1: Iron	7440-66-6	3.0	mg/kg DW	117	120	2.4
		S-METAXHB1: Phosphorus	7723-14-0	5.0	mg/kg DW	416	424	1.8
of country Appropriate	- Charles - About - About		1 (20-14-0	,0,0	mgmg DW	719	727	119
A R. LOW, MICH. HOLLOW, MICH.	s Hydrocarbons (PAHs	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	04.00.0	0.010	marker DAM	e0.010	~0.010	0.0
R1010185-003	111000003	S-PAHGMS01: Naphthalene	91-20-3	0.010	mg/kg DW	<0.010	<0.010 <0.010	0.0
		S-PAHGMS01: Acenaphthylene	208-96-8 83-32-9	0.010	mg/kg DW	<0.010	<0.010	0.0
		S-PAHGMS01: Acenaphthene	83-32-9 86-73-7	0.010	mg/kg DW	<0.010	<0.010	0.0
		S-PAHGMS01: Fluorene	2.532.55		mg/kg DW		350033	
		S-PAHGMS01; Phenanthrene	85-01-8	0.010	mg/kg DW	<0.010	<0.010	0.0

5 of 16 PR1010185 Amendment 1 Work Order Client AmbiPar Control, LDa.

Project Analises químicas de solos e de aquas subterraneas na regiao do graben das Lajes

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
Polycyclic Aromatic	s Hydrocarbons (PAHs	(QC Lot: 1310663) - continued								
PR1010185-003	111000003	S-PAHGMS01: Anthracene	120-12-7	0.010	mg/kg DW	<0.010	<0.010	0.0		
	1000	S-PAHGMS01: Fluoranthene	206-44-0	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Pyrene	129-00-0	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Benz(a)anthracene	56-55-3	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Chrysene	218-01-9	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Benzo(b)fluoranthene	205-99-2	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Benzo(k)fluoranthene	207-08-9	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01; Benzo(a)pyrene	50-32-8	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Indeno(1.2.3.cd)pyrene	193-39-5	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01; Benzo(g.h.i)perylene	191-24-2	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Dibenz(a h)anthracene	53-70-3	0.010	mg/kg DW	< 0.010	<0.010	0.0		
PR1010231-001	Anonymous	S-PAHGMS01; Naphthalene	91-20-3	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Acenaphthylene	208-96-8	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Acenaphthene	83-32-9	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Fluorene	86-73-7	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Phenanthrene	85-01-8	0.010	mg/kg DW	0.097	0.122	22.5		
		S-PAHGMS01: Anthracene	120-12-7	0.010	mg/kg DW	0.017	0.015	12.7		
		S-PAHGMS01: Fluoranthene	206-44-0	0.010	mg/kg DW	0.268	0.313	15.4		
		S-PAHGMS01: Pyrene	129-00-0	0.010	mg/kg DW	0.220	0.245	10.8		
		S-PAHGMS01: Benz(a)anthracene	56-55-3	0.010	mg/kg DW	0.086	0.093	7.3		
		S-PAHGMS01: Chrysene	218-01-9	0.010	mg/kg DW	0.103	0.120	15.3		
		S-PAHGMS01: Benzo(b)fluoranthene	205-99-2	0.010	mg/kg DW	0.067	0.062	7.7		
		S-PAHGMS01: Benzo(k)fluoranthene	207-08-9	0.010	mg/kg DW	0.071	0.066	6.4		
		S-PAHGMS01: Benzo(a)pyrene	50-32-8	0.010	mg/kg DW	0.092	0.103	11.5		
		S-PAHGMS01: Indeno(1.2.3.cd)pyrene	193-39-5	0.010	mg/kg DW	0.055	0.046	18.3		
		S-PAHGMS01: Benzo(g.h.i)perylene	191-24-2	0.010	mg/kg DW	0.054	0.046	17.7		
		S-PAHGMS01: Dibenz(a.h)anthracene	53-70-3	0.010	mg/kg DW	0.011	<0.010	11.7		
olvevelie Aromatic	s Hydrocarbons (PAHs			1077						
R1010185-021	111000021	S-PAHGMS01; Naphthalene	91-20-3	0.010	mg/kg DW	0.041	0.041	0.0		
. Have the nex	100-9-08	S-PAHGMS01: Acenaphthylene	208-96-8	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Acenaphthene	83-32-9	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Fluorene	86-73-7	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Phenanthrene	85-01-8	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Anthracene	120-12-7	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Fluoranthene	206-44-0	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Pyrene	129-00-0	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Benz(a)anthracene	56-55-3	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Chrysene	218-01-9	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Benzo(b)fluoranthene	205-99-2	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Benzo(k)fluoranthene	207-08-9	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Benzo(a)pyrene	50-32-8	0.010	mg/kg DW	< 0.010	<0.010	0.0		

6 of 16 PR1010185 Amendment 1 Work Order Client AmbiPar Control, LDa.

Project Analises quimicas de solos e de aquas subterraneas na regiao do graben das Lajes

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
Polycyclic Aromatic	s Hydrocarbons (PAHs	c) (QC Lot: 1313617) - continued								
PR1010185-021	111000021	S-PAHGMS01: Indeno(1.2.3.cd)pyrene	193-39-5	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Benzo(g.h.i)perylene	191-24-2	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Dibenz(a,h)anthracene	53-70-3	0.010	mg/kg DW	< 0.010	<0.010	0.0		
Polycyclic Aromatic	s Hydrocarbons (PAHs	(QC Lot: 1313732)	The same of the sa							
PR1010336-001	Anonymous	S-PAHGMS01; Naphthalene	91-20-3	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Acenaphthylene	208-96-8	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Acenaphthene	83-32-9	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Fluorene	86-73-7	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Phenanthrene	85-01-8	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Anthracene	120-12-7	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Fluoranthene	206-44-0	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Pyrene	129-00-0	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Benz(a)anthracene	56-55-3	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Chrysene	218-01-9	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Benzo(b)fluoranthene	205-99-2	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Benzo(k)fluoranthene	207-08-9	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01; Benzo(a)pyrene	50-32-8	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Indeno(1.2.3.cd)pyrene	193-39-5	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Benzo(g.h.i)perylene	191-24-2	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01: Dibenz(a.h)anthracene	53-70-3	0.010	mg/kg DW	<0.010	<0.010	0.0		
PR1010637-004	Anonymous	S-PAHGMS01: Naphthalene	91-20-3	0.010	mg/kg DW	<0.010	<0.010	0.0		
	D 1-19 11-1-1-1	S-PAHGMS01: Acenaphthylene	208-96-8	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Acenaphthene	83-32-9	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Fluorene	86-73-7	0.010	mg/kg DW	<0.010	<0.010	0.0		
		S-PAHGMS01: Phenanthrene	85-01-8	0.010	mg/kg DW	0.030	0.034	12.7		
		S-PAHGMS01: Anthracene	120-12-7	0.010	mg/kg DW	< 0.010	<0.010	0.0		
		S-PAHGMS01; Fluoranthene	206-44-0	0.010	mg/kg DW	0.086	0.082	5.4		
		S-PAHGMS01: Pyrene	129-00-0	0.010	mg/kg DW	0.074	0.069	8.3		
		S-PAHGMS01: Benz(a)anthracene	56-55-3	0.010	mg/kg DW	0.065	0.072	10.8		
		S-PAHGMS01: Chrysene	218-01-9	0.010	mg/kg DW	0.050	0.060	19.4		
		S-PAHGMS01: Benzo(b)fluoranthene	205-99-2	0.010	mg/kg DW	0.150	0.164	8.5		
		S-PAHGMS01: Benzo(k)fluoranthene	207-08-9	0.010	mg/kg DW	0.028	0.022	24.8		
		S-PAHGMS01: Benzo(a)pyrene	50-32-8	0.010	mg/kg DW	0.064	0.076	16.6		
		S-PAHGMS01: Indeno(1.2.3.cd)pyrene	193-39-5	0.010	mg/kg DW	0.101	0.120	16.7		
		S-PAHGMS01: Benzo(g.h.i)perylene	191-24-2	0.010	mg/kg DW	0.075	0.082	8.9		
		S-PAHGMS01: Dibenz(a,h)anthracene	53-70-3	0.010	mg/kg DW	0.012	0.014	14.3		
CDo (OC) ot dad	20041	On An Iolinous, Dioenz(a.n/anunacene	55.70.0	0.010	nighty of	0.07.2		14.0		
CBs (QC Lot: 1310 R1010185-003	111000003	C DODE CDOAL DCD 20	7012-37-5	0.0030	mg/kg DW	<0.0030	<0.0030	0.0		
11010103-003	111000003	S-PCBECD04; PCB 28	35693-99-3	0.0030	mg/kg DW	<0.0030	<0.0030	0.0		
		S-PCBECD04: PCB 52	37680-73-2	0.0030	mg/kg DW	<0.0030	<0.0030	0.0		
		S-PCBECD04: PCB 101	31508-00-6	0.0030	mg/kg DW	<0.0030	<0.0030	0.0		
		S-PCBECD04: PCB 118	3 1300-00-6	0.0000	mg/kg DVV	~0.0050	50.0030	0.0		

7 of 16 PR1010185 Amendment 1 Work Order Client AmbiPar Control, LDa.

Analises químicas de solos e de aquas subterraneas na regiao do graben das Lajes Project

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%		
PCBs (QC Lot: 131	0664) - continued		0.000							
PR1010185-003	111000003	S-PCBECD04: PCB 138	35065-28-2	0.0030	mg/kg DW	< 0.0030	<0.0030	0.0		
		S-PCBECD04: PCB 153	35065-27-1	0.0030	mg/kg DW	< 0.0030	<0.0030	0.0		
		S-PCBECD04: PCB 180	35065-29-3	0.0030	mg/kg DW	< 0.0030	<0.0030	0.0		
PCBs (QC Lot: 131:	3618)	A STREET STREET								
PR1010185-021	111000021	S-PCBECD04; PCB 28	7012-37-5	0.0030	mg/kg DW	< 0.0030	<0.0030	0.0		
		S-PCBECD04: PCB 52	35693-99-3	0.0030	mg/kg DW	< 0.0030	<0.0030	0.0		
		S-PCBECD04: PCB 101	37680-73-2	0.0030	mg/kg DW	< 0.0030	<0.0030	0.0		
		S-PCBECD04: PCB 118	31508-00-6	0.0030	mg/kg DW	< 0.0030	< 0.0030	0.0		
		S-PCBECD04: PCB 138	35065-28-2	0.0030	mg/kg DW	< 0.0030	< 0.0030	0.0		
		S-PCBECD04: PCB 153	35065-27-1	0.0030	mg/kg DW	< 0.0030	<0.0030	0.0		
		S-PCBECD04: PCB 180	35065-29-3	0.0030	mg/kg DW	< 0.0030	< 0.0030	0.0		
PCBs (QC Lot: 131:	3733)	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAME								
PR1010336-001	Anonymous	S-PCBECD04: PCB 28	7012-37-5	0.0200	mg/kg DW	<0.0200	<0.0200	0.0		
		S-PCBECD04: PCB 52	35693-99-3	0.0200	mg/kg DW	< 0.0200	<0.0200	0.0		
		S-PCBECD04: PCB 101	37680-73-2	0.0200	mg/kg DW	< 0.0200	<0.0200	0.0		
		S-PCBECD04: PCB 118	31508-00-6	0.0200	mg/kg DW	<0.0200	<0.0200	0.0		
		S-PCBECD04: PCB 138	35065-28-2	0.0200	mg/kg DW	< 0.0200	<0.0200	0.0		
		S-PCBECD04: PCB 153	35065-27-1	0.0200	mg/kg DW	<0.0200	<0.0200	0.0		
		S-PCBECD04: PCB 180	35065-29-3	0.0200	mg/kg DW	<0.0200	<0.0200	0.0		
Petroleum Hydroca	rbons (QC Lot: 1310643)									
PR1010185-003	111000003	S-TPHFID01: C10 - C40 Fraction		20	mg/kg DW	<20	<20	0.0		
PR1010185-045	111000045 Regional sample	S-TPHFID01: C10 - C40 Fraction		20	mg/kg DW	<20	<20	0.0		
Petroleum Hydroca	rbons (QC Lot: 1316847)	THE RESERVE OF THE PARTY OF THE								
PR1011287-001	Anonymous	S-TPHFID01: C10 - C40 Fraction		20	mg/kg DW	48	65	29.9		

Page 8 of 16

Work Order PR1010185 Amendment 1
Client AmbiPar Control, LDa.

Project Analises químicas de solos e de aquas subterraneas na regiao do graben das Lajes

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method accuracy (both precision and trueness) independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Recovery (%)	Reco	rery (%)	
Method: Compound	CAS Number	LOR	Unit	Result	LCS	Low	High	
Physical Parameters (QCLot: 1318175)								
S-LI550GR: Loss on Ignition @ 550°C		0.10	%		99.9	95	105	
Physical Parameters (QCLot: 1318176)								
S-LI550GR: Loss on Ignition @ 550°C	-	0.10	%	-	99.9	95	105	
Physical Parameters (QCLot: 1318177)								
S-LI550GR: Loss on Ignition @ 550°C	_	0.10	%	-	100	95	105	
Agregate Parameters (QCLot: 1315128)		17.0						
S-PHI-PHO: Phenol Index		0.20	mg/kg	<0.20	96.5	80	120	
Extractable Metals / Major Cations (QCLot: 1311571)								
S-METAXHB1: Antimony	7440-36-0	0.5	mg/kg DW	<0.50	95.2	80	120	
a manufactured annuals		0.50	mg/kg DW	<0.50				
S-METAXHB1: Arsenic	7440-38-2	0.5	mg/kg DW	<0.50	98.4	80	120	
		0.50	mg/kg DW	<0.50				
S-METAXHB1: Barium	7440-39-3	0.2	mg/kg DW	<0.20	104	80	120	
		0.20	mg/kg DW	<0.20				
S-METAXHB1: Beryllium	7440-41-7	0.01	mg/kg DW	<0.010	94.6	80	120	
		0.010	mg/kg DW	<0.010			-	
S-METAXHB1: Cadmium	7440-43-9	0.4	mg/kg DW	<0.40	103	80	120	
		0.40	mg/kg DW	<0.40			1111	
S-METAXHB1: Chromium	7440-47-3	0.5	mg/kg DW	<0.50	99.9	80	120	
		0.50	mg/kg DW	<0.50	****			
S-METAXHB1: Cobalt	7440-48-4	0.2	mg/kg DW	<0.20	105	80	120	
	0.12.00	0.20	mg/kg DW	<0.20	122			
S-METAXHB1: Copper	7440-50-8	1,0	mg/kg DW	<1.0	104	80	120	
S-METAXHB1: Iron	7439-89-6	10	mg/kg DW	<10	110	80	120	
S-METAXHB1: Lead	7439-92-1	1.0	mg/kg DW	<1.0	102	80	120	
S-METAXHB1: Lithium	7439-93-2	1.0	mg/kg DW	<1.0	96.8	80	120	
S-METAXHB1: Manganese	7439-96-5	0.5	mg/kg DW	<0.50	108	80	120	
		0,50	mg/kg DW	<0.50				
S-METAXHB1: Mercury	7439-97-6	0.2	mg/kg DW	<0.20	109	80	120	
	7/05/05 7	0.20	mg/kg DW	<0.20				
S-METAXHB1: Molybdenum	7439-98-7	0.4	mg/kg DW mg/kg DW	<0.40 <0.40	94.2	80	120	
S-METAXHB1: Nickel	7440-02-0	1.0	mg/kg DW	<1.0	99.7	80	120	
S-METAXHB1: Phosphorus	7723-14-0	5.0	mg/kg DW	<5.0	96.7	80	120	

9 of 16 PR1010185 Amendment 1 Work Order Client AmbiPar Control, LDa.

Analises químicas de solos e de aquas subterraneas na regiao do graben das Lajes Project

Sub-Matrix: SOIL				Method Blank (MB)		Control Spike (LCS) Report	
	- Parker to Tool		1	Report	Recovery (%)		very (%)
Method: Compound	CAS Number	LOR	Unit	Result	LCS	Low	High
Extractable Metals / Major Cations (QCLot: 1311	571) - continued		The second second			No. of Contract of	
S-METAXHB1: Silver	7440-22-4	0.5	mg/kg DW	<0.50	105	80	120
		0.50	mg/kg DW	<0.50			****
S-METAXHB1: Strontium	7440-24-6	0.1	mg/kg DW	<0.10	110	80	120
71-00-000-00-0		0.10	mg/kg DW	<0.10			-
S-METAXHB1: Thallium	7440-28-0	0.5	mg/kg DW	<0.50	98.3	80	120
		0.50	mg/kg DW	<0.50			
S-METAXHB1: Tin	7440-31-5	1.0	mg/kg DW	<1.0	97.2	80	120
S-METAXHB1: Vanadium	7440-62-2	0.1	mg/kg DW	<0.10	97.7	80	120
		0.10	mg/kg DW	<0.10	- index		(minus
S-METAXHB1; Zinc	7440-66-6	3.0	mg/kg DW	<3.0	99.1	80	120
BTEX (QCLot: 1310652)							
S-VOCGMS01: Benzene	71-43-2	0.02	mg/kg DW	<0.020	96.4	60	140
S-VOCGMS01: Toluene	108-88-3	0.1	mg/kg DW	<0.10	95.6	60	140
S-VOCGMS01: Ethylbenzene	100-41-4	0.02	mg/kg DW	<0.020	95.3	60	140
S-VOCGMS01: meta- & para-Xylene	108-38-3	0.02	mg/kg DW	<0.020	95.9	60	140
	106-42-3	·		200	Ad 4		0.04
S-VOCGMS01: ortho-Xylene	95-47-6	0.01	mg/kg DW	<0.010	95,3	60	140
BTEX (QCLot: 1310654)							
S-VOCGMS01: Benzene	71-43-2	0.02	mg/kg DW	<0.020	110	60	140
S-VOCGMS01: Toluene	108-88-3	0.1	mg/kg DW	<0.10	110	60	140
S-VOCGMS01: Ethylbenzene	100-41-4	0.02	mg/kg DW	<0.020	110	60	140
S-VOCGMS01: meta- & para-Xylene	108-38-3	0.02	mg/kg DW	<0.020	111	60	140
A STATE OF THE STA	106-42-3		2.5				
S-VOCGMS01: ortho-Xylene	95-47-6	0.01	mg/kg DW	<0.010	114	60	140
Halogenated Volatile Organic Compounds (QCL	ot: 1310651)						
S-VOCGMS04: Dichlorodifluoromethane	75-71-8	0.1	mg/kg DW	<0.10	128	60	140
S-VOCGMS04: Chloromethane	74-87-3	1	mg/kg DW	<1.0	120	60	140
S-VOCGMS04: Bromomethane	74-83-9	0.1	mg/kg DW	<0.10	113	60	140
S-VOCGMS04: Chloroethane	75-00-3	0.1	mg/kg DW	<0.10	119	60	140
S-VOCGMS04: Trichlorofluoromethane	75-69-4	0.1	mg/kg DW	<0.10	121	60	140
S-VOCGMS04: Bromochloromethane	74-97-5	0.2	mg/kg DW	<0.20	94.9	60	140
S-VOCGMS04: 2.2-Dichloropropane	594-20-7	0.1	mg/kg DW	<0.10	93.2	60	140
S-VOCGMS04: 1.1-Dichloropropylene	563-58-6	0.1	mg/kg DW	<0.10	94.3	60	140
S-VOCGMS04: Dibromomethane	74-95-3	0.1	mg/kg DW	<0.10	98.4	60	140
S-VOCGMS04: cis-1.3-Dichloropropylene	10061-01-5	0.1	mg/kg DW	<0.10	98.6	60	140
S-VOCGMS04: trans-1.3-Dichloropropene	10061-02-6	0.1	mg/kg DW	<0.10	97.6	60	140
S-VOCGMS04: 1.3-Dichloropropane	142-28-9	0.1	mg/kg DW	<0.10	93.7	60	140
S-VOCGMS04: 1.2-Dibromoethane (EDB)	106-93-4	0.1	mg/kg DW	<0.10	99.9	60	140
S-VOCGMS04: 1.2.3-Trichloropropane	96-18-4	0.1	mg/kg DW	<0.10	96.3	60	140

10 of 16 PR1010185 Amendment 1 Work Order Client AmbiPar Control, LDa.

Project Analises quimicas de solos e de aquas subterraneas na regiao do graben das Lajes

Sub-Matrix: SOIL				Method Blank (MB) Report		Control Spike (LCS) Report	
	11111111111	750			Recovery (%)		rery (%)
Method: Compound	CAS Number	LOR	Unit	Result	LCS	Low	High
Halogenated Volatile Organic Compounds (QCLo							
S-VOCGMS04: Bromobenzene	108-86-1	0.1	mg/kg DW	<0.10	97.3	60	140
S-VOCGMS04: 2-Chlorotoluene	95-49-8	0.1	mg/kg DW	<0.10	94.6	60	140
S-VOCGMS04: 4-Chlorotoluene	106-43-4	0.1	mg/kg DW	<0.10	106	60	140
S-VOCGMS04: 1.2-Dibromo-3-chloropropane	96-12-8	0.1	mg/kg DW	<0.10	103	60	140
S-VOCGMS04: Hexachlorobutadiene	87-68-3	0.1	mg/kg DW	<0.10	94.4	60	140
Halogenated Volatile Organic Compounds (QCLo	t: 1310652)						
S-VOCGMS01: Vinyl chloride	75-01-4	0,1	mg/kg DW	<0.10	124	60	140
S-VOCGMS01: trans-1.2-Dichloroethene	156-60-5	0.01	mg/kg DW	<0.010	92.8	60	140
S-VOCGMS01: Dichloromethane	75-09-2	0.1	mg/kg DW	<0.10	94.9	60	140
S-VOCGMS01: 1.1-Dichloroethene	75-35-4	0.01	mg/kg DW	<0.010	93.8	60	140
S-VOCGMS01: cis-1.2-Dichloroethene	156-59-2	0.02	mg/kg DW	<0.020	93.6	60	140
S-VOCGMS01: 1.1-Dichloroethane	75-34-3	0.01	mg/kg DW	<0.010	93.8	60	140
S-VOCGMS01: Chloroform	67-66-3	0.03	mg/kg DW	<0.030	95.6	60	140
S-VOCGMS01: 1.2-Dichloroethane	107-06-2	0.05	mg/kg DW	<0.050	97.3	60	140
S-VOCGMS01: 1.1.1-Trichloroethane	71-55-6	0.01	mg/kg DW	<0.010	93,2	60	140
S-VOCGMS01: Tetrachloromethane	56-23-5	0.01	mg/kg DW	<0.010	93.8	60	140
S-VOCGMS01: Bromodichloromethane	75-27-4	0.02	mg/kg DW	<0.020	96.3	60	140
S-VOCGMS01: Trichloroethene	79-01-6	0.01	mg/kg DW	<0.010	93.8	60	140
S-VOCGMS01: 1.1.2-Trichloroethane	79-00-5	0.04	mg/kg DW	<0.040	97.6	60	140
S-VOCGMS01: Dibromochloromethane	124-48-1	0.02	mg/kg DW	<0.020	96.0	60	140
S-VOCGMS01: Tetrachloroethene	127-18-4	0.02	mg/kg DW	<0.020	93.7	60	140
S-VOCGMS01: 1.1.1.2-Tetrachloroethane	630-20-6	0.01	mg/kg DW	<0.010	96.6	60	140
S-VOCGMS01: Chlorobenzene	108-90-7	0.01	mg/kg DW	<0.010	96.0	60	140
S-VOCGMS01: Bromoform	75-25-2	0.04	mg/kg DW	<0.040	96.6	60	140
S-VOCGMS01: 1.1.2.2-Tetrachloroethane	79-34-5	0.1	mg/kg DW	<0.10	102	60	140
S-VOCGMS01: 1.2-Dichlorobenzene	95-50-1	0.02	mg/kg DW	<0.020	95.5	60	140
S-VOCGMS01: 1.4-Dichlorobenzene	106-46-7	0.02	mg/kg DW	<0.020	97.4	60	140
S-VOCGMS01: 1.3-Dichlorobenzene	541-73-1	0.02	mg/kg DW	<0.020	96.5	60	140
S-VOCGMS01: 1.2.4-Trichlorobenzene	120-82-1	0.03	mg/kg DW	<0.030	98.2	60	140
S-VOCGMS01: 1.2.3-Trichlorobenzene	87-61-6	0.02	mg/kg DW	<0.020	99.7	60	140
S-VOCGMS01: 1.3.5-Trichlorobenzene	108-70-3	0.05	mg/kg DW	<0.050	95.4	60	140
S-VOCGMS01: 1.2-Dichloropropane	78-87-5	0,1	mg/kg DW	<0.10	97.9	60	140
lalogenated Volatile Organic Compounds (QCLo	t. 1310653)						
S-VOCGMS04: Dichlorodifluoromethane	75-71-8	0.1	mg/kg DW	<0.10	92.3	60	140
S-VOCGMS04: Chloromethane	74-87-3	1	mg/kg DW	<1.0	107	60	140
S-VOCGMS04: Bromomethane	74-83-9	0.1	mg/kg DW	<0.10	110	60	140
S-VOCGMS04: Chloroethane	75-00-3	0.1	mg/kg DW	<0.10	106	60	140
S-VOCGMS04: Trichlorofluoromethane	75-69-4	0.1	mg/kg DW	<0.10	95.9	60	140
S-VOCGMS04: Bromochloromethane	74-97-5	0.2	mg/kg DW	<0.20	109	60	140

11 of 16 PR1010185 Amendment 1 Work Order Client AmbiPar Control, LDa.

Project Analises quimicas de solos e de aquas subterraneas na regiao do graben das Lajes

Sub-Matrix: SOIL				Method Blank (MB) Report		Control Spike (LCS) Report	
					Recovery (%)		very (%)
Method: Compound	CAS Number	LOR	Unit	Result	LCS	Low	High
Halogenated Volatile Organic Compounds (QCLo		-0.7					
S-VOCGMS04: 2.2-Dichloropropane	594-20-7	0.1	mg/kg DW	<0.10	123	60	140
S-VOCGMS04: 1.1-Dichloropropylene	563-58-6	0.1	mg/kg DW	<0.10	108	60	140
S-VOCGMS04: Dibromomethane	74-95-3	0.1	mg/kg DW	<0.10	108	60	140
S-VOCGMS04: cis-1.3-Dichloropropylene	10061-01-5	0.1	mg/kg DW	<0.10	109	60	140
S-VOCGMS04: trans-1.3-Dichloropropene	10061-02-6	0.1	mg/kg DW	<0.10	113	60	140
S-VOCGMS04: 1.3-Dichloropropane	142-28-9	0.1	mg/kg DW	<0.10	111	60	140
S-VOCGMS04: 1.2-Dibromoethane (EDB)	106-93-4	0,1	mg/kg DW	<0.10	114	60	140
S-VOCGMS04: 1.2.3-Trichloropropane	96-18-4	0.1	mg/kg DW	<0.10	110	60	140
S-VOCGMS04: Bromobenzene	108-86-1	0.1	mg/kg DW	<0.10	108	60	140
S-VOCGMS04: 2-Chlorotoluene	95-49-8	0.1	mg/kg DW	<0.10	111	60	140
G-VOCGMS04: 4-Chlorotoluene	106-43-4	0.1	mg/kg DW	<0.10	108	60	140
G-VOCGMS04: 1.2-Dibromo-3-chloropropane	96-12-8	0.1	mg/kg DW	<0.10	116	60	140
S-VOCGMS04: Hexachlorobutadiene	87-68-3	0.1	mg/kg DW	<0.10	102	60	140
lalogenated Volatile Organic Compounds (QCLo	t: 1310654)						
S-VOCGMS01: Vinyl chloride	75-01-4	0.1	mg/kg DW	<0.10	103	60	140
S-VOCGMS01: trans-1.2-Dichloroethene	156-60-5	0.01	mg/kg DW	<0.010	111	60	140
S-VOCGMS01: Dichloromethane	75-09-2	0.1	mg/kg DW	<0.10	108	60	140
S-VOCGMS01: 1.1-Dichloroethene	75-35-4	0.01	mg/kg DW	<0.010	108	60	140
S-VOCGMS01: cis-1.2-Dichloroethene	156-59-2	0.02	mg/kg DW	<0.020	113	60	140
S-VOCGMS01: 1.1-Dichloroethane	75-34-3	0.01	mg/kg DW	<0.010	110	60	140
S-VOCGMS01: Chloroform	67-66-3	0.03	mg/kg DW	<0.030	108	60	140
S-VOCGMS01: 1.2-Dichloroethane	107-06-2	0.05	mg/kg DW	<0.050	107	60	140
S-VOCGMS01: 1.1.1-Trichloroethane	71-55-6	0.01	mg/kg DW	<0.010	111	60	140
S-VOCGMS01: Tetrachloromethane	56-23-5	0.01	mg/kg DW	<0.010	107	60	140
S-VOCGMS01: Bromodichloromethane	75-27-4	0.02	mg/kg DW	<0.020	110	60	140
S-VOCGMS01: Trichloroethene	79-01-6	0.01	mg/kg DW	<0.010	112	60	140
S-VOCGMS01: 1.1.2-Trichloroethane	79-00-5	0.04	mg/kg DW	<0.040	109	60	140
S-VOCGMS01: Dibromochloromethane	124-48-1	0.02	mg/kg DW	<0.020	108	60	140
S-VOCGMS01: Tetrachloroethene	127-18-4	0.02	mg/kg DW	<0.020	111	60	140
S-VOCGMS01: 1.1.1.2-Tetrachloroethane	630-20-6	0.01	mg/kg DW	<0.010	108	60	140
S-VOCGMS01: Chlorobenzene	108-90-7	0.01	mg/kg DW	<0.010	115	60	140
S-VOCGMS01: Bromoform	75-25-2	0.04	mg/kg DW	<0.040	115	60	140
S-VOCGMS01: 1.1.2.2-Tetrachloroethane	79-34-5	0.1	mg/kg DW	<0.10	107	60	140
S-VOCGMS01: 1.2-Dichlorobenzene	95-50-1	0.02	mg/kg DW	<0.020	111	60	140
-VOCGMS01: 1.4-Dichlorobenzene	106-46-7	0.02	mg/kg DW	<0.020	112	60	140
S-VOCGMS01: 1.3-Dichlorobenzene	541-73-1	0.02	mg/kg DW	<0.020	112	60	140
S-VOCGMS01: 1.2,4-Trichlorobenzene	120-82-1	0.03	mg/kg DW	<0.030	115	60	140
S-VOCGMS01: 1.2.3-Trichlorobenzene	87-61-6	0.02	mg/kg DW	<0.020	108	60	140
S-VOCGMS01: 1.3.5-Trichlorobenzene	108-70-3	0.05	mg/kg DW	<0.050	111	60	140

12 of 16 PR1010185 Amendment 1 Work Order Client AmbiPar Control, LDa.

Analises quimicas de solos e de aquas subterraneas na regiao do graben das Lajes Project

Sub-Matrix: SOIL				Method Blank (MB)		Control Spike (LCS) Report	
	1215		1	Report	Recovery (%)		very (%)
Method: Compound	CAS Number	LOR	Unit	Result	LCS	Low	High
Halogenated Volatile Organic Compounds (QCLo						V	
S-VOCGMS01: 1.2-Dichloropropane	78-87-5	0.1	mg/kg DW	<0.10	112	60	140
Non-Halogenated Volatile Organic Compounds (C	CLot: 1310651)						
S-VOCGMS04: Isopropylbenzene	98-82-8	0.1	mg/kg DW	<0.10	95.0	60	140
S-VOCGMS04: n-Propylbenzene	103-65-1	0.1	mg/kg DW	<0.10	93.5	60	140
S-VOCGMS04: 1.2.4-Trimethylbenzene	95-63-6	0.1	mg/kg DW	<0.10	100	60	140
S-VOCGMS04: p-Isopropyltoluene	99-87-6	0.1	mg/kg DW	<0.10	94.8	60	140
S-VOCGMS04: 1.3.5-Trimethylbenzene	108-67-8	0.1	mg/kg DW	<0.10	98.6	60	140
S-VOCGMS04: sec-Butylbenzene	135-98-8	0.1	mg/kg DW	<0.10	93.4	60	140
S-VOCGMS04: tert-Butylbenzene	98-06-6	0.1	mg/kg DW	<0.10	94.4	60	140
S-VOCGMS04: n-Butylbenzene	104-51-8	0.1	mg/kg DW	<0.10	94.6	60	140
S-VOCGMS04: Naphthalene	91-20-3	0.1	mg/kg DW	<0.10	110	60	140
Non-Halogenated Volatile Organic Compounds (C	CLot: 1310652)						
S-VOCGMS01: Styrene	100-42-5	0.04	mg/kg DW	<0.040	97.7	60	140
S-VOCGMS01: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.05	mg/kg DW	<0.050	98.3	60	140
S-VOCGMS01: tert-Butyl alcohol	75-65-0	0.8	mg/kg DW	<0.80	100	60	140
Non-Halogenated Volatile Organic Compounds (C	CLot: 1310653)	-					
S-VOCGMS04: Isopropylbenzene	98-82-8	0.1	mg/kg DW	<0.10	111	60	140
S-VOCGMS04: n-Propylbenzene	103-65-1	0.1	mg/kg DW	<0.10	109	60	140
S-VOCGMS04: 1.2.4-Trimethylbenzene	95-63-6	0.1	mg/kg DW	<0.10	113	60	140
S-VOCGMS04: p-Isopropyltoluene	99-87-6	0.1	mg/kg DW	<0.10	110	60	140
S-VOCGMS04: 1.3.5-Trimethylbenzene	108-67-8	0.1	mg/kg DW	<0.10	107	60	140
S-VOCGMS04: sec-Butylbenzene	135-98-8	0.1	mg/kg DW	<0.10	107	60	140
S-VOCGMS04: tert-Butylbenzene	98-06-6	0.1	mg/kg DW	<0.10	110	60	140
S-VOCGMS04: n-Butylbenzene	104-51-8	0.1	mg/kg DW	<0.10	107	60	140
S-VOCGMS04: Naphthalene	91-20-3	0.1	mg/kg DW	<0.10	113	60	140
Non-Halogenated Volatile Organic Compounds (C	CLot: 1310654)						
S-VOCGMS01: Styrene	100-42-5	0.04	mg/kg DW	<0.040	110	60	140
S-VOCGMS01: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.05	mg/kg DW	<0.050	110	60	140
S-VOCGMS01: tert-Butyl alcohol	75-65-0	0.8	mg/kg DW	<0.80	104	60	140
Polycyclic Aromatics Hydrocarbons (PAHs) (QCL	ot: 1310663)	1.5					
S-PAHGMS01: Naphthalene	91-20-3	0.01	mg/kg	<0.010	79.3	55	145
S-PAHGMS01: Acenaphthylene	208-96-8	0.01	mg/kg	<0.010	96.6	55	145
S-PAHGMS01: Acenaphthene	83-32-9	0.01	mg/kg	<0.010	69.0	55	145
S-PAHGMS01: Fluorene	86-73-7	0.01	mg/kg	<0.010	120	55	145
S-PAHGMS01: Phenanthrene	85-01-8	0.01	mg/kg	<0.010	93.7	55	145
S-PAHGMS01: Anthracene	120-12-7	0.01	mg/kg	<0.010	99.5	55	145
S-PAHGMS01: Fluoranthene	206-44-0	0.01	mg/kg	<0.010	103	55	145
S-PAHGMS01: Pyrene	129-00-0	0.01	mg/kg	<0.010	94.6	55	145

13 of 16 PR1010185 Amendment 1 Work Order AmbiPar Control, LDa.

Analises químicas de solos e de aquas subterraneas na regiao do graben das Lajes Project

Sub-Matrix: SOIL				Method Blank (MB)		Control Spike (LCS) Report	
				Report	Recovery (%)		overy (%)
Method: Compound	CAS Number	LOR	Unit	Result	LCS	Low	High
Polycyclic Aromatics Hydrocarbons (PAHs) (Q	CLot: 1310663) - continued						
S-PAHGMS01: Benz(a)anthracene	56-55-3	0.01	mg/kg	<0.010	99.9	55	145
S-PAHGMS01: Chrysene	218-01-9	0.01	mg/kg	<0.010	97.8	55	145
S-PAHGMS01: Benzo(b)fluoranthene	205-99-2	0.01	mg/kg	<0.010	116	55	145
S-PAHGMS01: Benzo(k)fluoranthene	207-08-9	0.01	mg/kg	<0.010	101	55	145
S-PAHGMS01: Benzo(a)pyrene	50-32-8	0.01	mg/kg	<0.010	106	55	145
S-PAHGMS01: Indeno(1.2.3.cd)pyrene	193-39-5	0.01	mg/kg	<0.010	132	55	145
S-PAHGMS01: Benzo(g.h.i)perylene	191-24-2	0.01	mg/kg	<0.010	116	55	145
S-PAHGMS01: Dibenz(a.h)anthracene	53-70-3	0.01	mg/kg	<0.010	116	55	145
Polycyclic Aromatics Hydrocarbons (PAHs) (Q	CLot: 1313617)						
S-PAHGMS01: Naphthalene	91-20-3	0.01	mg/kg	<0.010	117	55	145
S-PAHGMS01: Acenaphthylene	208-96-8	0.01	mg/kg	<0.010	85.8	55	145
S-PAHGMS01: Acenaphthene	83-32-9	0.01	mg/kg	<0.010	113	55	145
S-PAHGMS01: Fluorene	86-73-7	0.01	mg/kg	<0.010	119	55	145
S-PAHGMS01: Phenanthrene	85-01-8	0.01	mg/kg	<0.010	108	55	145
S-PAHGMS01: Anthracene	120-12-7	0.01	mg/kg	<0.010	125	55	145
S-PAHGMS01: Fluoranthene	206-44-0	0.01	mg/kg	<0.010	115	55	145
S-PAHGMS01: Pyrene	129-00-0	0.01	mg/kg	<0.010	106	55	145
S-PAHGMS01; Benz(a)anthracene	56-55-3	0.01	mg/kg	<0.010	97.0	55	145
S-PAHGMS01: Chrysene	218-01-9	0.01	mg/kg	<0.010	96.5	55	145
S-PAHGMS01: Benzo(b)fluoranthene	205-99-2	0.01	mg/kg	<0.010	116	55	145
S-PAHGMS01: Benzo(k)fluoranthene	207-08-9	0.01	mg/kg	<0.010	114	55	145
S-PAHGMS01: Benzo(a)pyrene	50-32-8	0.01	mg/kg	<0.010	83.5	55	145
S-PAHGMS01: Indeno(1.2,3.cd)pyrene	193-39-5	0.01	mg/kg	<0.010	126	55	145
S-PAHGMS01; Benzo(g.h.i)perylene	191-24-2	0.01	mg/kg	<0.010	112	55	145
S-PAHGMS01: Dibenz(a.h)anthracene	53-70-3	0.01	mg/kg	<0.010	110	55	145
Polycyclic Aromatics Hydrocarbons (PAHs) (Q	CLot: 1313732)						
S-PAHGMS01: Naphthalene	91-20-3	0.01	mg/kg	<0.010	111	55	145
S-PAHGMS01: Acenaphthylene	208-96-8	0.01	mg/kg	<0.010	92.0	55	145
S-PAHGMS01: Acenaphthene	83-32-9	0.01	mg/kg	<0.010	112	55	145
S-PAHGMS01: Fluorene	86-73-7	0.01	mg/kg	<0.010	122	55	145
S-PAHGMS01: Phenanthrene	85-01-8	0.01	mg/kg	<0.010	118	55	145
S-PAHGMS01: Anthracene	120-12-7	0.01	mg/kg	<0.010	116	55	145
S-PAHGMS01: Fluoranthene	206-44-0	0.01	mg/kg	<0.010	112	55	145
S-PAHGMS01: Pyrene	129-00-0	0.01	mg/kg	<0.010	107	55	145
S-PAHGMS01: Benz(a)anthracene	56-55-3	0.01	mg/kg	<0.010	107	55	145
S-PAHGMS01: Chrysene	218-01-9	0.01	mg/kg	<0.010	107	55	145
S-PAHGMS01: Benzo(b)fluoranthene	205-99-2	0.01	mg/kg	<0.010	125	55	145
S-PAHGMS01: Benzo(k)fluoranthene	207-08-9	0.01	mg/kg	<0.010	121	55	145
S-PAHGMS01: Benzo(a)pyrene	50-32-8	0.01	mg/kg	<0.010	90.7	.55	145

14 of 16 PR1010185 Amendment 1 Work Order Client - AmbiPar Control, LDa.

Project - Analises químicas de solos e de aquas subterraneas na regiao do graben das Lajes

Sub-Matrix: SOIL				Method Blank (MB)		Control Spike (LCS) Report	
Clark Co.				Report	Recovery (%)		ery (%)
Method: Compound	CAS Number	LOR	Unit	Result	LCS	Low	High
Polycyclic Aromatics Hydrocarbons (PAHs) (C	QCLot: 1313732) - continued						
S-PAHGMS01: Indeno(1.2.3.cd)pyrene	193-39-5	0.01	mg/kg	<0.010	143	55	145
S-PAHGMS01: Benzo(g.h.i)perylene	191-24-2	0.01	mg/kg	<0.010	134	55	145
S-PAHGMS01: Dibenz(a.h)anthracene	53-70-3	0.01	mg/kg	<0.010	132	55	145
PCBs (QCLot: 1310664)							
S-PCBECD04: PCB 28	7012-37-5	0.002	mg/kg DW	<0.0020	111	60	140
S-PCBECD04: PCB 52	35693-99-3	0.002	mg/kg DW	<0.0020	110	60	140
S-PCBECD04: PCB 101	37680-73-2	0.002	mg/kg DW	<0.0020	104	60	140
S-PCBECD04: PCB 118	31508-00-6	0.002	mg/kg DW	<0.0020	108	60	140
S-PCBECD04: PCB 138	35065-28-2	0.002	mg/kg DW	<0.0020	105	60	140
S-PCBECD04: PCB 153	35065-27-1	0.002	mg/kg DW	<0.0020	114	60	140
S-PCBECD04; PCB 180	35065-29-3	0.002	mg/kg DW	<0.0020	109	60	140
PCBs (QCLot: 1313618)	1,100,000						
S-PCBECD04: PCB 28	7012-37-5	0.002	mg/kg DW	<0.0020	118	60	140
S-PCBECD04: PCB 52	35693-99-3	0.002	mg/kg DW	<0.0020	112	60	140
S-PCBECD04: PCB 101	37680-73-2	0.002	mg/kg DW	<0.0020	97.6	60	140
S-PCBECD04: PCB 118	31508-00-6	0.002	mg/kg DW	<0.0020	109	60	140
S-PCBECD04: PCB 138	35065-28-2	0.002	mg/kg DW	<0.0020	101	60	140
S-PCBECD04: PCB 153	35065-27-1	0.002	mg/kg DW	<0.0020	102	60	140
S-PCBECD04: PCB 180	35065-29-3	0.002	mg/kg DW	<0.0020	106	60	140
PCBs (QCLot: 1313733)							
S-PCBECD04: PCB 28	7012-37-5	0.002	mg/kg DW	<0.0020	109	60	140
S-PCBECD04: PCB 52	35693-99-3	0.002	mg/kg DW	<0.0020	99.7	-60	140
S-PCBECD04: PCB 101	37680-73-2	0.002	mg/kg DW	<0.0020	93.7	60	140
S-PCBECD04: PCB 118	31508-00-6	0.002	mg/kg DW	<0.0020	102	60	140
S-PCBECD04: PCB 138	35065-28-2	0.002	mg/kg DW	<0.0020	102	60	140
S-PCBECD04: PCB 153	35065-27-1	0.002	mg/kg DW	<0.0020	99.8	60	140
S-PCBECD04: PCB 180	35065-29-3	0.002	mg/kg DW	<0.0020	102	60	140
Petroleum Hydrocarbons (QCLot: 1310643)							
S-TPHFID01: C10 - C12 Fraction		2	mg/kg DW	<2			0-000
S-TPHFID01: C10 - C40 Fraction	G	20	mg/kg DW	<20	120	70	130
S-TPHFID01: C12 - C16 Fraction	(prince)	3	mg/kg DW	<3			
S-TPHFID01: C16 - C35 Fraction	_	10	mg/kg DW	<10			
S-TPHFID01: C35 - C40 Fraction	-	5	mg/kg DW	<5			
Petroleum Hydrocarbons (QCLot: 1316847)							
S-TPHFID01: C10 - C12 Fraction	- Second	2	mg/kg DW	<2			
S-TPHFID01: C10 - C40 Fraction		20	mg/kg DW	<20	111	70	130
S-TPHFID01: C12 - C16 Fraction	_	3	mg/kg DW	<3			-
S-TPHFID01: C16 - C35 Fraction		10	mg/kg DW	<10			-

: 15 of 16 : PR1010185 Amendment 1 Work Order Client : AmbiPar Control, LDa.

Project Analises químicas de solos e de aquas subterraneas na regiao do graben das Lajes

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report			
Company of the Compan				Report	Recovery (%)	Recove Low	rery (%)
Method: Compound	CAS Number	LOR	Unit	Result	LCS	Low	High
Petroleum Hydrocarbons (QCLot: 1316847) - con	tinued						
S-TPHFID01: C35 - C40 Fraction		5	mg/kg DW	<5			-

Page 16 of 16

Work Order PR1010185 Amendment 1
Client AmbiPar Control, LDa.

Project Analises químicas de solos e de aquas subterraneas na regiao do graben das Lajes

Barrely Calles OfC Depart

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (MS) Rep	ort	
				Spike Concentration	Recovery (%)	Recov	ery (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	The Control of the Co	MS	Low	High
Extractable Metals /	Major Cations (QCLot: 131157	1)					
PR1010185-032	111000032	S-METAXHB1: Barium	7440-39-3	100 mg/kg DW	108	70	130
		S-METAXHB1: Cadmium	7440-43-9	100 mg/kg DW	107	70	130
		S-METAXHB1: Chromium	7440-47-3	100 mg/kg DW	110	70	130
		S-METAXHB1: Cobalt	7440-48-4	100 mg/kg DW	106	70	130
		S-METAXHB1; Copper	7440-50-8	100 mg/kg DW	129	70	130
		S-METAXHB1: Lead	7439-92-1	100 mg/kg DW	106	70	130
	1	S-METAXHB1: Lithium	7439-93-2	100 mg/kg DW	94.0	70	130
	S-METAXHB1: Manganese	7439-96-5	500 mg/kg DW	118	70	130	
	S-METAXHB1: Mercury	7439-97-6	110 mg/kg DW	123	70	130	
	1	S-METAXHB1: Nickel	7440-02-0	100 mg/kg DW	108	70	130
	1	S-METAXHB1: Silver	7440-22-4	100 mg/kg DW	125	70	130
		S-METAXHB1: Strontium	7440-24-6	100 mg/kg DW	110	70	130
		S-METAXHB1: Thallium	7440-28-0	100 mg/kg DW	85.0	70	130
		S-METAXHB1: Zinc	7440-66-6	100 mg/kg DW	103	70	130
PR1010185-032	111000032	S-METAXHB1: Iron	7439-89-6	35000 mg/kg DW	103	70	130
		S-METAXHB1: Phosphorus	7723-14-0	2500 mg/kg DW	89.5	70	130
PR1010185-032	111000032	S-METAXHB1: Antimony	7440-36-0	100 mg/kg DW	102	70	130
		S-METAXHB1: Arsenic	7440-38-2	100 mg/kg DW	104	70	130
		S-METAXHB1: Beryllium	7440-41-7	100 mg/kg DW	97.9	70	130
		S-METAXHB1: Molybdenum	7439-98-7	100 mg/kg DW	90.5	70	130
		S-METAXHB1: Tin	7440-31-5	100 mg/kg DW	97.5	70	130
		S-METAXHB1: Vanadium	7440-62-2	100 mg/kg DW	90.3	70	130

Avaliação da Contaminação de Solos -	Praia da Vitória, Ilha Terceira – Açores
	ANEXO 4.6 – Resultado Analíticos

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division - Europe

CERTIFICATE OF ANALYSIS

Work Order	: PR1010185	Issue Date	20-APR-2010
Client	: AmbiPar Control, LDa.	Laboratory	: ALS Czech Republic, s.r.o.
Contact	Mr José Morais	Contact	: Client Service
Address	Apartado 34	Address	Na Harfe 336/9 Prague 9 - Vysocany
	Castro Verde Portugal 7780 ; 909		Czech Republic 190 00
E-mail	jose.morais@ambiparcontrol.pt	E-mail	customer.support@alsglobal.com
Telephone	+351 3512 863 28318	Telephone	+420 284 081 645
Facsimile	-	Facsimile	+420 284 081 635
Project	 Analises quimicas de solos e de aquas subterraneas na regiao do graben das Lajes 	Page	= 1 of 48
Order number	AP/100407JM/001P	Date Samples	: 08-APR-2010
		Received	
C-O-C number	()	Quote number	PR2010AMBCO-PT0001 (PT-300-09-0610)
Site	3 -2	Date of test	12-APR-2010 - 20-APR-2010
Sampled by	(American Control of C	QC Lével	ALS CR Standard Quality Control Schedule

General Comments

This report shall not be reproduced except in full, without prior written approval from the laboratory.

The laboratory declares that the test results relate only to the listed samples.

The sample PR

10185-002, -003, -004, -005, -006, -007, -008, -009, -010, -011, -012, -013, -014, -015, -016, -017, -018, -019, -020,

 $\hbox{-}021, \hbox{-}022, \hbox{-}023, \hbox{-}024, \hbox{-}025, \hbox{-}026, \hbox{-}027, \hbox{-}028, \hbox{-}029-, \hbox{0}30-\hbox{0}31, \hbox{-}032, \hbox{-}033, \hbox{-}034, \hbox{-}035, \hbox{-}034, \hbox{-$

036,-037,-038,-039,-040,-041,-042,-043,-044,-045 was filtered for

NNO and NO2 analysis

It was measured temperature during the transport, temperature was measured in each box, $t1=0.3^{\circ}\text{C}$, $t2=0.8^{\circ}\text{C}$, $t3=1^{\circ}\text{C}$

Method phenol, the sample PR10185/004,005,025,026,027 - due to the matrix composition the lower LOR could not be reached.

The sample PR1010185,-018,019, 024, 026, 030 -Cd and Sb was measured by ICP-MS

Containers and Preservation received: 1 plastic bag under vacuum without chemical preservation and 1 vial preserved with methanol

Signatories

This document has been electronically signed by those names that appear on this report and are the authorized signatories specified in the Appendix to Certificate of Accreditation No. 521/2008 to Testing Laboratory No. 1163, which has been issued by Czech accreditation Institute.

Signatories

Emilie Pokorna

ALS Czech Republic, s.r.o. Part of the ALS Laboratory Group

Na Harfe 336/9 Prague 9 - Vysocany Czech Republic 190 00
Tel. +426 284 881 645 Fax. +420 284 981 635 www.alsenviro.com

 Issue Date
 ; 20-APR-2010

 Page
 ; 2 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Analytical Results

Sub-Matrix: SOIL		Cli	ent sample ID	111000001 S blank for \		1110000	02	1110000	03
		Laborate	ory sample ID	PR1010185	5001	PR101018	5002	PR101018	5003
	C	Client sampli	ing date / time	05-APR-2010	11:20	05-APR-2010	00:00	05-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Physical Parameters									
Loss on Ignition @ 550°C	S-LI550GR	0.10	% DW			6.08	±0.31	9.60	±0.48
Dry matter @ 105°C	S-DRY-GRCI	0.10	%			66.9	±3.35	62.3	±3.12
Agregate Parameters									
Phenol Index	S-PHI-PHO	0.20	mg/kg DW			0.88	±0.31	0.57	±0.20
Nonmetallic Inorganic Parameters									
Nitrates	S-NO3-SPC	20	mg/kg DW			<20	-	<20	
Sulphate as SO4 2-	S-SO4-GR	0.10	% DW			0.24	±0.02	0.12	±0.01
Nitrate as N	S-NO3-SPC	4.0	mg/kg DW			<4.0		<4.0	
Extractable Metals / Major Cations	100	0.50							
Antimony	S-METAXHB1	0.50	mg/kg DW			0.52	±0.10	0.72	±0.14
Arsenic	S-METAXHB1	0.50	mg/kg DW			10.7	±2.15	8.73	±1.75
Barium	S-METAXHB1	0.20	mg/kg DW			329	±65.7	276	±55.2
Beryllium	S-METAXHB1	0.010	mg/kg DW			3.53	±0.706	5.28	±1.06
Cadmium	S-METAXHB1	0.40	mg/kg DW			<0.40		<0.40	
Chromium	S-METAXHB1	0.50	mg/kg DW			10.4	±2.08	10.3	±2.06
Cobalt	S-METAXHB1	0.20	mg/kg DW			21.9	±4.38	15.9	±3.18
Copper	S-METAXHB1	1.0	mg/kg DW			13.5	±2.7	10.9	±2.2
Iron	S-METAXHB1	10	mg/kg DW			58500	±11700	61100	±12200
Lead	S-METAXHB1	1.0	mg/kg DW			9.1	±1.8	8.8	±1.8
Lithium	S-METAXHB1	1.0	mg/kg DW			24.1	±4.8	23.5	±4.7
Manganese	S-METAXHB1	0.50	mg/kg DW		-	7060	±1410	2180	±437
Mercury	S-METAXHB1	0.20	mg/kg DW			<0.20		<0.20	
Molybdenum	S-METAXHB1	0.40	mg/kg DW			7.06	±1.41	5.51	±1.10
Nickel	S-METAXHB1	1.0	mg/kg DW			11.4	±2.3	8.4	±1.7
Phosphorus	S-METAXHB1	5.0	mg/kg DW			364	±72.7	854	±171
Silver	S-METAXHB1	0.50	mg/kg DW			0.88	±0.18	<0.50	
Strontium	S-METAXHB1	0.10	mg/kg DW			38.6	±7.73	133	±26.7
Thallium	S-METAXHB1	0.50	mg/kg DW			1.54	±0.31	<0.50	
Tin	S-METAXHB1	1.0	mg/kg DW			3.4	±0.7	2.7	±0.5
Vanadium	S-METAXHB1	0.10	mg/kg DW			42.7	±8.54	45.1	±9.02
Zinc	S-METAXHB1	3.0	mg/kg DW			258	±51.5	367	±73.4
BTEX									
Benzene	S-VOCGMS01	0.020	mg/kg	<0.020					
Benzene	S-VOCGMS01	0.020	mg/kg DW			<0.020		<0.020	
Toluene	S-VOCGMS01	0.10	mg/kg	<0.10					
Toluene	S-VOCGMS01	0.10	mg/kg DW			<0.10		<0.10	
Ethylbenzene	S-VOCGMS01	0.020	mg/kg	<0.020					
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW			<0.020		<0.020	
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg	<0.020					
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW			<0.020		<0.020	
ortho-Xylene	S-VOCGMS01	0.010	mg/kg	<0.010					
ortho-Xylene	S-VOCGMS01	0.010	mg/kg DW			<0.010		<0.010	
Sum of TEX	S-VOCGMS01	0.150	mg/kg	<0.150					
Sum of TEX	S-VOCGMS01	0.150	mg/kg DW			<0.150	-	<0.150	
Sum of BTEX	S-VOCGMS01	0.170	mg/kg	<0.170			-		
Sum of BTEX	S-VOCGMS01	0.170	mg/kg DW			<0.170		<0.170	
Sum of xylenes	S-VOCGMS01	0.030	mg/kg	<0.030					
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW			<0.030		<0.030	
Halogenated Volatile Organic Comp									
Dichlorodifluoromethane	S-VOCGMS04	0.10	mg/kg	<0.10					-
Dichlorodifluoromethane	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
Vinyl chloride	S-VOCGMS01	0.10	mg/kg	<0.10					

ALS Czech Republic, s.r.o.

Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 3 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	111000001 S blank for	voc	1110000	02	1110000	
			ory sample ID ing date / time	PR101018:		PR1010185		PR101018	
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Halogenated Volatile Organic C		2011	O/M	7.00011		110000			
Vinyl chloride	S-VOCGMS01	0.10	mg/kg DW			<0.10		<0.10	
Chloromethane	S-VOCGMS04	1.0	mg/kg	<1.0					
Chloromethane	S-VOCGMS04	1.0	mg/kg DW			<1.0		<1.0	
trans-1.2-Dichloroethene	S-VOCGMS01	0.010	mg/kg	<0.010					
trans-1.2-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW			<0.010		<0.010	
Bromomethane	S-VOCGMS04	0.10	mg/kg	<0.10					
Bromomethane	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
Dichloromethane	S-VOCGMS01	0.80	mg/kg	<0.80					-
Dichloromethane	S-VOCGMS01	0.80	mg/kg DW			<0.80		<0.80	
1.1-Dichloroethene	S-VOCGMS01	0.010	mg/kg	<0.010					
1.1-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW			<0.010		<0.010	
Chloroethane	S-VOCGMS04	0.10	mg/kg	<0.10				,	
Chloroethane	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
cis-1.2-Dichloroethene	S-VOCGMS01	0.020	mg/kg	<0.020					
cis-1.2-Dichloroethene	S-VOCGMS01	0.020	mg/kg DW			<0.020		<0.020	
Trichlorofluoromethane	S-VOCGMS04	0.10	mg/kg	<0.10					
Trichlorofluoromethane	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
1.1-Dichloroethane	S-VOCGMS01	0.010	mg/kg	<0.010					
1.1-Dichloroethane	S-VOCGMS01	0.010	mg/kg DW			<0.010		<0.010	
Bromochloromethane	S-VOCGMS04	0.20	mg/kg	<0.20					
Bromochloromethane	S-VOCGMS04	0.20	mg/kg DW			<0.20		<0.20	
2.2-Dichloropropane	S-VOCGMS04	0.10	mg/kg	<0.10					
2.2-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
Chloroform	S-VOCGMS01	0.030	mg/kg	<0.030					
Chloroform	S-VOCGMS01	0.030	mg/kg DW			<0.030		<0.030	
1.1-Dichloropropylene	S-VOCGMS04	0.10	mg/kg	<0.10					
1.1-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
1.2-Dichloroethane	S-VOCGMS01	0.100	mg/kg	<0.100					
1.2-Dichloroethane	S-VOCGMS01	0.100	mg/kg DW		-	<0.100		<0.100	
1.1.1-Trichloroethane	S-VOCGMS01	0.010	mg/kg	<0.010					
1.1.1-Trichloroethane	S-VOCGMS01	0.010	mg/kg DW			<0.010		<0.010	
Dibromomethane	S-VOCGMS04	0.10	mg/kg	<0.10					
Dibromomethane	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
cis-1.3-Dichloropropylene	S-VOCGMS04	0.10	mg/kg	<0.10					
cis-1.3-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
Tetrachloromethane	S-VOCGMS01	0.010	mg/kg	<0.010					
Tetrachloromethane	S-VOCGMS01	0.010	mg/kg DW			<0.010		<0.010	_
Bromodichloromethane	S-VOCGMS01	0.020	mg/kg	<0.020					
Bromodichloromethane	S-VOCGMS01	0.020	mg/kg DW			<0.020		<0.020	
trans-1.3-Dichloropropene	S-VOCGMS04	0.10	mg/kg	<0.10					
trans-1.3-Dichloropropene	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
1.3-Dichloropropane	S-VOCGMS04	0.10	mg/kg	<0.10					
1.3-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
Trichloroethene	S-VOCGMS01	0.010	mg/kg	<0.010					
Trichloroethene	S-VOCGMS01	0.010	mg/kg DW			<0.010		<0.010	
1.1.2-Trichloroethane	S-VOCGMS01	0.040	mg/kg	<0.040					
1.1.2-Trichloroethane	S-VOCGMS01	0.040	mg/kg DW			<0.040		<0.040	
1.2-Dibromoethane (EDB)	S-VOCGMS04	0.10	mg/kg	<0.10					-
1.2-Dibromoethane (EDB)	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
1.2.3-Trichloropropane	S-VOCGMS04	0.10	mg/kg	<0.10					,
1.2.3-Trichloropropane	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
Dibromochloromethane	S-VOCGMS01	0.020	mg/kg	<0.020					
Dibromochloromethane	S-VOCGMS01	0.020	mg/kg DW			<0.020		<0.020	
Bromobenzene	S-VOCGMS04	0.10	mg/kg	<0.10					

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 4 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Clie	ent sample ID	111000001 S		1110000	02	111000003	
		Laborate	ory sample ID	PR1010185001		PR1010185002		PR1010185003	
		lient sampling date / time		05-APR-2010 11:20		05-APR-2010 00:00		05-APR-2010 00:00	
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Halogenated Volatile Organic Compo	ounds - Continued		11111111	701111					
Bromobenzene	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
Tetrachloroethene	S-VOCGMS01	0.020	mg/kg	0.027	±0.011				
Tetrachloroethene	S-VOCGMS01	0.020	mg/kg DW			0.035	±0.014	0.031	±0.012
1.1.1.2-Tetrachloroethane	S-VOCGMS01	0.010	mg/kg	<0.010					
1.1.1.2-Tetrachloroethane	S-VOCGMS01	0.010	mg/kg DW			<0.010		<0.010	-
2-Chlorotoluene	S-VOCGMS04	0.10	mg/kg	<0.10					
2-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW		-	<0.10		<0.10	
Chlorobenzene	S-VOCGMS01	0.010	mg/kg	<0.010					
Chlorobenzene	S-VOCGMS01	0.010	mg/kg DW			<0.010		<0.010	
4-Chlorotoluene	S-VOCGMS04	0.10	mg/kg	<0.10					
4-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
Bromoform	S-VOCGMS01	0.040	mg/kg	<0.040				 	
Bromoform	S-VOCGMS01	0.040	mg/kg DW			<0.040		<0.040	
1.1.2.2-Tetrachloroethane	S-VOCGMS01	0.10	mg/kg	<0.10		<0.10		<0.10	
1.1.2.2-Tetrachloroethane	S-VOCGMS01	0.10	mg/kg DW	<0.020				10000	
1.2-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg	<0.020 		<0.020		<0.020	
1.2-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.10		<0.020		<0.020	
1.2-Dibromo-3-chloropropane	S-VOCGMS04	0.10	mg/kg mg/kg DW	V0.10		<0.10		<0.10	
1.2-Dibromo-3-chloropropane	S-VOCGMS04	0.10	mg/kg	<0.020					
1.4-Dichlorobenzene	S-VOCGMS01 S-VOCGMS01	0.020	mg/kg DW			<0.020		<0.020	
1.4-Dichlorobenzene 1.3-Dichlorobenzene	S-VOCGIVISO1	0.020	mg/kg	<0.020					
1.3-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW			<0.020		<0.020	
1.2.4-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg	<0.030					
1.2.4-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg DW			<0.030		<0.030	
Hexachlorobutadiene	S-VOCGMS01	0.10	mg/kg	<0.10					
Hexachlorobutadiene	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
1.2.3-Trichlorobenzene	S-VOCGMS01	0.020	mg/kg	<0.020					
1.2.3-Trichlorobenzene	S-VOCGMS01	0.020	mg/kg DW			<0.020		<0.020	
1.3.5-Trichlorobenzene	S-VOCGMS01	0.050	mg/kg	<0.050	-				
1.3.5-Trichlorobenzene	S-VOCGMS01	0.050	mg/kg DW			<0.050		<0.050	
1.2-Dichloropropane	S-VOCGMS01	0.10	mg/kg	<0.10					
1.2-Dichloropropane	S-VOCGMS01	0.10	mg/kg DW			<0.10		<0.10	
Sum of 3 Dichlorobenzenes	S-VOCGMS01	0.060	mg/kg	<0.060					
Sum of 3 Dichlorobenzenes	S-VOCGMS01	0.060	mg/kg DW			<0.060		<0.060	
Sum of 4 Trihalomethanes	S-VOCGMS01	0.110	mg/kg	<0.110					
Sum of 4 Trihalomethanes	S-VOCGMS01	0.110	mg/kg DW			<0.110		<0.110	-
Non-Halogenated Volatile Organic Co	ompounds								
Isopropylbenzene	S-VOCGMS04	0.10	mg/kg	<0.10					
Isopropylbenzene	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	-
n-Propylbenzene	S-VOCGMS04	0.10	mg/kg	<0.10					
n-Propylbenzene	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
1.2.4-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg	<0.10	-				
1.2.4-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
p-Isopropyltoluene	S-VOCGMS04	0.10	mg/kg	<0.10					
p-Isopropyltoluene	S-VOCGMS04	0.10	mg/kg DW	 0.10		<0.10		<0.10	
1.3.5-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg	<0.10	-	<0.10		<0.10	
1.3.5-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.040		<0.10		<0.10	
Styrene	S-VOCGMS01	0.040	mg/kg	<0.040		<0.040		<0.040	
Styrene	S-VOCGMS01	0.040	mg/kg DW	<0.10		<0.040		<0.040	
sec-Butylbenzene	S-VOCGMS04	0.10	mg/kg	<0.10		<0.10		<0.10	-
sec-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW mg/kg	<0.10		<0.10		<0.10	
tert-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
tert-Butylbenzene	S-VOCGMS04	0.10	IIIg/kg DW			~0.10		~0.10	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group
Na Harfe 336/9 Prague 9 - Vysocany Czech Republic 190 00

 Issue Date
 ; 20-APR-2010

 Page
 ; 5 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Sub-Matrix: SOIL		Client sample ID		111000001 Sample blank for VOC		111000002		111000003	
	Laboratory sample ID			PR1010185001		PR1010185002		PR1010185003	
		Client sampli	ing date / time	05-APR-2010 11:20		05-APR-2010	00:00	05-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	ми	Result	MU	Result	MU
Non-Halogenated Volatile Organic	Compounds - Continu	ed							
n-Butylbenzene	S-VOCGMS04	0.10	mg/kg	<0.10					
n-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
Naphthalene	S-VOCGMS04	0.10	mg/kg	<0.10					
Naphthalene	S-VOCGMS04	0.10	mg/kg DW			<0.10		<0.10	
Methyl tert-Butyl Ether (MTBE)	S-VOCGMS01	0.050	mg/kg	<0.050					-
Methyl tert-Butyl Ether (MTBE)	S-VOCGMS01	0.050	mg/kg DW			<0.050		<0.050	
tert-Butyl alcohol	S-VOCGMS01	0.80	mg/kg	<0.80					
tert-Butyl alcohol	S-VOCGMS01	0.80	mg/kg DW			<0.80		<0.80	
Sum of BTEXS	S-VOCGMS01	0.210	mg/kg	<0.210					
Sum of BTEXS	S-VOCGMS01	0.210	mg/kg DW			<0.210		<0.210	
Polycyclic Aromatics Hydrocarbon									
Naphthalene	S-PAHGMS01	0.010	mg/kg DW			< 0.010	_	<0.010	
Acenaphthylene	S-PAHGMS01	0.010	mg/kg DW			<0.010		<0.010	
Acenaphthene	S-PAHGMS01	0.010	mg/kg DW			<0.010		<0.010	
Fluorene	S-PAHGMS01	0.010	mg/kg DW			<0.010		<0.010	
Phenanthrene	S-PAHGMS01	0.010	mg/kg DW			<0.010		<0.010	
Anthracene	S-PAHGMS01	0.010	mg/kg DW			<0.010		<0.010	
Fluoranthene	S-PAHGMS01	0.010	mg/kg DW			<0.010		<0.010	-
Pyrene	S-PAHGMS01	0.010	mg/kg DW			<0.010		<0.010	
Benz(a)anthracene	S-PAHGMS01	0.010	mg/kg DW			<0.010		<0.010	
Chrysene	S-PAHGMS01	0.010	mg/kg DW			<0.010		<0.010	
Benzo(b)fluoranthene	S-PAHGMS01	0.010	mg/kg DW			<0.010		<0.010	
Benzo(k)fluoranthene	S-PAHGMS01	0.010	mg/kg DW			<0.010		<0.010	
Benzo(a)pyrene	S-PAHGMS01	0.010	mg/kg DW			<0.010		<0.010	
Indeno(1.2.3.cd)pyrene	S-PAHGMS01	0.010	mg/kg DW			<0.010		<0.010	-
Benzo(g.h.i)perylene	S-PAHGMS01	0.010	mg/kg DW			<0.010		<0.010	
Dibenz(a.h)anthracene	S-PAHGMS01	0.010	mg/kg DW			<0.010		<0.010	
Sum of 16 PAH	S-PAHGMS01	0.160	mg/kg DW			<0.160		<0.160	
Sum of carcinogenic PAH	S-PAHGMS01	0.070	mg/kg DW			<0.070		<0.070	
Sum of non carcinogenic PAH	S-PAHGMS01	0.090	mg/kg DW			<0.090		<0.090	
PCBs	0-1 ALIOMOUT	0.000	mg ng z m						
PCB 28	S-PCBECD04	0.0030	mg/kg DW			<0.0030		<0.0030	
PCB 52	S-PCBECD04	0.0030	mg/kg DW			<0.0030		<0.0030	
PCB 101	S-PCBECD04	0.0030	mg/kg DW			<0.0030		<0.0030	
PCB 118	S-PCBECD04	0.0030	mg/kg DW			<0.0030		<0.0030	
PCB 138	S-PCBECD04	0.0030	mg/kg DW			<0.0030		<0.0030	
PCB 153	S-PCBECD04	0.0030	mg/kg DW			<0.0030		<0.0030	
PCB 180	S-PCBECD04	0.0030	mg/kg DW			<0.0030		<0.0030	
Sum of 7 PCBs	S-PCBECD04	0.021	mg/kg DW			<0.021		<0.021	
Petroleum Hydrocarbons	U-1 OBLODO								
C10 - C12 Fraction	S-TPHFID01	2	mg/kg DW		1	<2		<2	
C10 - C40 Fraction	S-TPHFID01	20	mg/kg DW			<20		<20	
C12 - C16 Fraction	S-TPHFID01	3	mg/kg DW			<3		<3	
C16 - C35 Fraction	S-TPHFID01	10	mg/kg DW			<10		<10	
C35 - C40 Fraction	S-TPHFID01	5	mg/kg DW			<5		<5	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 ; 20-APR-2010

 Page
 ; 6 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Sub-Matrix: SOIL		Client sample ID			111000004		05	111000006 (1/2 111000006+1/2 111000041) PR1010185006 05-APR-2010 00:00	
	,	Laboratory sample ID Client sampling date / time				PR101018 05-APR-2010			
		1		05-APR-2010				001	
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Physical Parameters									
Loss on Ignition @ 550°C	S-LI550GR	0.10	% DW	7.49	±0.38	8.81	±0.44	4.78	±0.25
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	59.9	±2.99	55.4	±2.77	72.1	±3.60
Agregate Parameters	0.011.0110	0.20	mar/les DNA/	-2.00		-2.00		<0.20	
Phenol Index	S-PHI-PHO	0.20	mg/kg DW	<2.00		<2.00		<0.20	
Nonmetallic Inorganic Paramete		20	mg/kg DW	<20		<20		<20	
Nitrates	S-NO3-SPC	0.10	mg/kg DVV	<0.10				<0.10	
Sulphate as SO4 2-	S-SO4-GR	4.0		<4.0		0.12 <4.0	±0.01	<4.0	
Nitrate as N	S-NO3-SPC	4.0	mg/kg DW	<4.0		<4.0		<4.0	
Extractable Metals / Major Catio		0.50	ma/ka DM/	-0.E0		0.00	.0.10	0.75	
Antimony	S-METAXHB1	0.50	mg/kg DW	<0.50		0.92	±0.18	0.75	±0.15
Arsenic	S-METAXHB1	0.50	mg/kg DW	7.72	±1.54	8.49	±1.70	7.60	±1.52
Barium	S-METAXHB1	0.20	mg/kg DW	101	±20.3	148	±29.6	146	±29.3
Beryllium	S-METAXHB1	0.010	mg/kg DW	3.92	±0.784	4.24	±0.847	5.36	±1.07
Cadmium	S-METAXHB1	0.40	mg/kg DW	<0.40		<0.40		<0.40	
Chromium	S-METAXHB1	0.50	mg/kg DW	9.03	±1.80	7.57	±1.51	11.7	±2.34
Cobalt	S-METAXHB1	0.20	mg/kg DW	14.9	±2.98	17.4	±3.48	22.8	±4.56
Copper	S-METAXHB1	1.0	mg/kg DW	12.0	±2.4	20.9	±4.2	9.8	±2.0
Iron	S-METAXHB1	10	mg/kg DW	59400	±11900	50800	±10200	54000	±10800
Lead	S-METAXHB1	1.0	mg/kg DW	7.0	±1.4	7.5	±1.5	6.5	±1.3
Lithium	S-METAXHB1	1.0	mg/kg DW	10.1	±2.0	26.1	±5.2	18.3	±3.6
Manganese	S-METAXHB1	0.50	mg/kg DW	1780	±356	2180	±436	1900	±380
Mercury	S-METAXHB1	0.20	mg/kg DW	<0.20		<0.20		<0.20	
Molybdenum	S-METAXHB1	0.40	mg/kg DW	7.17	±1.43	5.61	±1.12	2.90	±0.58
Nickel	S-METAXHB1	1.0	mg/kg DW	13.2	±2.6	8.8	±1.8	14.2	±2.8
Phosphorus	S-METAXHB1	5.0	mg/kg DW	538	±108	620	±124	350	±70.0
Silver	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		0.72	±0.14
Strontium	S-METAXHB1	0.10	mg/kg DW	43.1	±8.61	62.3	±12.4	24.0	±4.80
Thallium	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		<0.50	
Tin	S-METAXHB1	1.0	mg/kg DW	<1.0		1.3	±0.3	2.6	±0.5
Vanadium	S-METAXHB1	0.10	mg/kg DW	46.6	±9.32	70.9	±14.2	46.4	±9.27
Zinc	S-METAXHB1	3.0	mg/kg DW	174	±34.9	211	±42.2	173	±34.7
BTEX									
Benzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Toluene	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	_
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
ortho-Xylene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of TEX	S-VOCGMS01	0.150	mg/kg DW	<0.150	_	<0.150		<0.150	
Sum of BTEX	S-VOCGMS01	0.170	mg/kg DW	<0.170		<0.170		<0.170	
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
		5.000		3,000		3,000		3.000	
Halogenated Volatile Organic Concentration Dichlorodifluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Vinyl chloride	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
•	S-VOCGMS01	1.0	mg/kg DW	<1.0		<1.0		<1.0	
Chloromethane	10 (100)	0.010	mg/kg DW	<0.010		<0.010		<0.010	
trans-1.2-Dichloroethene	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.010		<0.10	
Bromomethane	S-VOCGMS04	0.10				<0.10		<0.10	
Dichloromethane	S-VOCGMS01		mg/kg DW	<0.80					
1.1-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chloroethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
cis-1.2-Dichloroethene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Trichlorofluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.1-Dichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromochloromethane	S-VOCGMS04	0.20	mg/kg DW	<0.20		<0.20		<0.20	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 7 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	111000004		111000005		111000006 (1/2 111000006+1/2 111000041) PR1010185006	
		Laboratory sample ID			PR1010185004		5005		
		Client sampli	ng date / time	05-APR-2010	00:00	05-APR-2010	00:00	05-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Halogenated Volatile Organic Comp	ounds - Continued								
2.2-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloroform	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
1.1-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2-Dichloroethane	S-VOCGMS01	0.100	mg/kg DW	<0.100		<0.100		<0.100	
1.1.1-Trichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dibromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
cis-1.3-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Tetrachloromethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromodichloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
trans-1.3-Dichloropropene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Trichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
1.1.2-Trichloroethane	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.2-Dibromoethane (EDB)	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Dibromochloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Bromobenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Tetrachloroethene	S-VOCGMS01	0.020	mg/kg DW	0.026	±0.011	0.025	±0.010	0.033	±0.013
1.1.1.2-Tetrachloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
2-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chlorobenzene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
4-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Bromoform	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.1.2.2-Tetrachloroethane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	-
1.2-Dibromo-3-chloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.4-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020	-	<0.020	-
1.2.4-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Hexachlorobutadiene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3.5-Trichlorobenzene	S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.050		<0.050	
1.2-Dichloropropane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Sum of 3 Dichlorobenzenes	S-VOCGMS01	0.060	mg/kg DW	<0.060		<0.060		<0.060	
Sum of 4 Trihalomethanes	S-VOCGMS01	0.110	mg/kg DW	<0.110		<0.110		<0.110	
Non-Halogenated Volatile Organic C		0.40	D14/	-0.40		-0.40		-0.40	
Isopropylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
n-Propylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.4-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10 <0.10		<0.10		<0.10 <0.10	
p-Isopropyltoluene	S-VOCGMS04		mg/kg DW mg/kg DW			<0.10			-
1.3.5-Trimethylbenzene	S-VOCGMS04	0.10		<0.10		<0.10		<0.10	
Styrene	S-VOCGMS01	0.040	mg/kg DW	<0.040 <0.10		<0.040 <0.10		<0.040 <0.10	-
sec-Butylbenzene	S-VOCGMS04		mg/kg DW						
tert-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW mg/kg DW	<0.10 <0.10		<0.10 <0.10		<0.10 <0.10	
n-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Naphthalene	S-VOCGMS04	0.050		<0.10		<0.10		<0.10	
Methyl tert-Butyl Ether (MTBE)	S-VOCGMS01	0.80	mg/kg DW	<0.050		<0.050		<0.050	
tert-Butyl alcohol	S-VOCGMS01	0.80	mg/kg DW mg/kg DW	<0.80		<0.80		<0.210	
Sum of BTEXS	S-VOCGMS01	0.210	ilig/kg DVV	NO.210		V0.210		NO.210	
Polycyclic Aromatics Hydrocarbons		0.010	mg/kg DW	<0.010		<0.010		<0.010	
Naphthalene	S-PAHGMS01	0.010	mg/kg DW	<0.010					
Acenaphthylene	S-PAHGMS01					< 0.010		< 0.010	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 8 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Clie	ent sample ID	111000004		111000005		111000006 (1/2 111000006+1/2 111000041)	
		Laborato	ory sample ID	PR1010185	5004	PR1010185	005	PR1010185006	
	(Client sampli	ng date / time	05-APR-2010	00:00	05-APR-2010	00:00	05-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Polycyclic Aromatics Hydrocarbo	ons (PAHs) - Continued			GEV HILL					
Fluorene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Phenanthrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benz(a)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	-
Chrysene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(b)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(k)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(a)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Indeno(1.2.3.cd)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(g.h.i)perylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dibenz(a.h)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of 16 PAH	S-PAHGMS01	0.160	mg/kg DW	<0.160		<0.160		<0.160	
Sum of carcinogenic PAH	S-PAHGMS01	0.070	mg/kg DW	<0.070		<0.070		<0.070	
Sum of non carcinogenic PAH	S-PAHGMS01	0.090	mg/kg DW	<0.090		<0.090		<0.090	
PCBs	122 (1911)								
PCB 28	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 52	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 101	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 118	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 138	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 153	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 180	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
Sum of 7 PCBs	S-PCBECD04	0.021	mg/kg DW	<0.021		<0.021		<0.021	
Petroleum Hydrocarbons									
C10 - C12 Fraction	S-TPHFID01	2	mg/kg DW	<2		<2		<2	
C10 - C40 Fraction	S-TPHFID01	20	mg/kg DW	21	±6	<20		32	±10
C12 - C16 Fraction	S-TPHFID01	3	mg/kg DW	<3		<3		<3	
C16 - C35 Fraction	S-TPHFID01	10	mg/kg DW	14	±4	<10		28	±8
C35 - C40 Fraction	S-TPHFID01	5	mg/kg DW	5	±2	<5		<5	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 ; 20-APR-2010

 Page
 ; 9 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Sub-Matrix: SOIL		Client sample ID				111000008		111000009		
odb Madix. OOIL		Laboratory sample ID			5007	PR1010185008		PR1010185009		
	,	Client sampling date / time				05-APR-2010 00:00		05-APR-2010		
		T	_	05-APR-2010						
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU	
Physical Parameters Loss on Ignition @ 550°C	S-LI550GR	0.10	% DW	7.97	±0.40	3.82	±0.20	5.07	±0.26	
	S-LISSUGR S-DRY-GRCI	0.10	%	63.8	±3.19	72.3	±3.61	62.6	±3.13	
Dry matter @ 105°C Agregate Parameters	S-DRT-GROI	0.10	70	00.0	23.19	72.0	10.01	02.0	20.10	
Phenol Index	S-PHI-PHO	0.20	mg/kg DW	<0.20	1	0.80	±0.28	<0.20		
Nonmetallic Inorganic Parameter				Balling						
Nitrates	S-NO3-SPC	20	mg/kg DW	<20		<20	- 1	<20		
Sulphate as SO4 2-	S-SO4-GR	0.10	% DW	<0.10		<0.10	-	<0.10	_	
Nitrate as N	S-NO3-SPC	4.0	mg/kg DW	<4.0		<4.0		<4.0		
Extractable Metals / Major Cation	ıs									
Antimony	S-METAXHB1	0.50	mg/kg DW	<0.50		2.53	±0.51	0.52	±0.10	
Arsenic	S-METAXHB1	0.50	mg/kg DW	11.6	±2.31	7.10	±1.42	5.47	±1.09	
Barium	S-METAXHB1	0.20	mg/kg DW	104	±20.8	75.2	±15.0	102	±20.4	
Beryllium	S-METAXHB1	0.010	mg/kg DW	3.98	±0.796	3.90	±0.781	4.13	±0.826	
Cadmium	S-METAXHB1	0.40	mg/kg DW	<0.40		0.67	±0.13	<0.40		
Chromium	S-METAXHB1	0.50	mg/kg DW	8.58	±1.72	8.64	±1.73	8.24	±1.65	
Cobalt	S-METAXHB1	0.20	mg/kg DW	16.3	±3.27	16.6	±3.32	22.0	±4.40	
Copper	S-METAXHB1	1.0	mg/kg DW	6.2	±1.2	4.3	±0.8	7.7	±1.5	
Iron	S-METAXHB1	10	mg/kg DW	59200	±11800	53400	±10700	56100	±11200	
Lead	S-METAXHB1	1.0	mg/kg DW	10.6	±2.1	6.2	±1.2	4.6	±0.9	
Lithium	S-METAXHB1	1.0	mg/kg DW	18.9	±3.8	9.8	±2.0	9.3	±1.9	
Manganese	S-METAXHB1	0.50	mg/kg DW	2560	±512	2010	±403	1680	±337	
Mercury	S-METAXHB1	0.20	mg/kg DW	<0.20		0.23	±0.04	<0.20		
Molybdenum	S-METAXHB1	0.40	mg/kg DW	8.38	±1.68	5.25	±1.05	2.94	±0.59	
Nickel	S-METAXHB1	1.0	mg/kg DW	10.3	±2.1	14.5	±2.9	9.0	±1.8	
Phosphorus	S-METAXHB1	5.0	mg/kg DW	236	±47.2	292	±58.5	578	±116	
Silver	S-METAXHB1	0.50	mg/kg DW	2.26	±0.45	1.20	±0.24	<0.50		
Strontium	S-METAXHB1	0.10	mg/kg DW	31.4	±6.28	14.3	±2.86	26.6	±5.31	
Thallium	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		<0.50	-	
Tin	S-METAXHB1	1.0	mg/kg DW	2.9	±0.6	2.3	±0.5	<1.0		
Vanadium	S-METAXHB1	0.10	mg/kg DW	48.2	±9.64	38.0	±7.61	78.9	±15.8	
Zinc	S-METAXHB1	3.0	mg/kg DW	127	±25.4	132	±26.3	173	±34.7	
BTEX	A 2010 HER 1881									
Benzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020		
Toluene	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	-	
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020		
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020		
ortho-Xylene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	,	
Sum of TEX	S-VOCGMS01	0.150	mg/kg DW	<0.150		<0.150		<0.150		
Sum of BTEX	S-VOCGMS01	0.170	mg/kg DW	<0.170		<0.170		<0.170	-	
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030		
Halogenated Volatile Organic Co										
Dichlorodifluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
Vinyl chloride	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10		
Chloromethane	S-VOCGMS04	1.0	mg/kg DW	<1.0		<1.0	-	<1.0	-	
trans-1.2-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010		
Bromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10	-	<0.10		
Dichloromethane	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80		
1.1-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010		
Chloroethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
cis-1.2-Dichloroethene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020		
Trichlorofluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
1.1-Dichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010		
Bromochloromethane	S-VOCGMS04	0.20	mg/kg DW	<0.20		<0.20		<0.20	-	
2.2-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
Chloroform	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030		

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 ; 20-APR-2010

 Page
 ; 10 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000	07	1110000	08	111000009		
		Laboratory sample ID		PR1010185007		PR1010185008		PR1010185009		
		Client sampling date / time		05-APR-2010 00:00		05-APR-2010 00:00		05-APR-2010 00:00		
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU	
Halogenated Volatile Organic Comp	ounds - Continued			NO. III						
1.1-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10	1	<0.10		<0.10		
1.2-Dichloroethane	S-VOCGMS01	0.100	mg/kg DW	<0.100		<0.100		<0.100		
1.1.1-Trichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-	
Dibromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
cis-1.3-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10	1	<0.10		<0.10		
Tetrachloromethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010		
Bromodichloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020		
trans-1.3-Dichloropropene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
1.3-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
Trichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010		
1.1.2-Trichloroethane	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040		
1.2-Dibromoethane (EDB)	S-VOCGMS04	0.10	mg/kg DW	<0.10	1	<0.10		<0.10		
1.2.3-Trichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
Dibromochloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020		
Bromobenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
Tetrachloroethene	S-VOCGMS01	0.020	mg/kg DW	0.032	±0.013	<0.020		0.037	±0.015	
1.1.1.2-Tetrachloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010		
2-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
Chlorobenzene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010		
4-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
Bromoform	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	-	
1.1.2.2-Tetrachloroethane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10		
1.2-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020		
1.2-Dibromo-3-chloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
1.4-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020		
1.3-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020		
1.2.4-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030		
Hexachlorobutadiene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
1.2.3-Trichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020		
1.3.5-Trichlorobenzene	S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.050		<0.050		
1.2-Dichloropropane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10		
Sum of 3 Dichlorobenzenes	S-VOCGMS01	0.060	mg/kg DW	<0.060		<0.060		<0.060		
Sum of 4 Trihalomethanes	S-VOCGMS01	0.110	mg/kg DW	<0.110		<0.110		<0.110		
Non-Halogenated Volatile Organic C		2.12								
Isopropylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
n-Propylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
1.2.4-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
p-Isopropyltoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10		
1.3.5-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10 <0.040		<0.10 <0.040		<0.10 <0.040		
Styrene	S-VOCGMS01	0.040	mg/kg DW mg/kg DW	<0.040		<0.040		<0.040		
sec-Butylbenzene	S-VOCGMS04	0.10	0 0	<0.10		<0.10		<0.10		
tert-Butylbenzene	S-VOCGMS04		mg/kg DW							
n-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW mg/kg DW	<0.10		<0.10		<0.10		
Naphthalene	S-VOCGMS04	0.10		<0.10 <0.050		<0.10		<0.10		
Methyl tert-Butyl Ether (MTBE)	S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.050		<0.050		
tert-Butyl alcohol	S-VOCGMS01	0.80	mg/kg DW mg/kg DW	<0.80		<0.210		<0.80		
Sum of BTEXS	S-VOCGMS01	0.210	ilig/kg DVV	~U.Z1U		~U.Z IU		~U.Z1U		
Polycyclic Aromatics Hydrocarbons Naphthalene	S-PAHGMS01	0.010	mg/kg DW	0.011	±0.003	<0.010		<0.010		
Acenaphthylene	S-PAHGMS01	0.010	mg/kg DW	<0.011		<0.010		<0.010		
Acenaphthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010		
	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010		
Fluorene Phenanthrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010		
Anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010		
Fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010		
1 Idolalitielle	0-FAFIGINIOUT	0.010	mg/ng DVV	-5.010		-0.010		-0.010		

ALS Czech Republic, s.r.o. Part of the ALS Laboratory Group

 Issue Date
 ; 20-APR-2010

 Page
 ; 11 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Sub-Matrix: SOIL		Clie	ent sample ID	1110000	07	1110000	08	1110000	09
		Laborato	ory sample ID	PR1010185	5007	PR1010185	5008	PR1010185	5009
		Client sampli	ng date / time	05-APR-2010	00:00	05-APR-2010	00:00	05-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Polycyclic Aromatics Hydrocarbo	ons (PAHs) - Continued								
Pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benz(a)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chrysene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(b)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010	_	<0.010	-	<0.010	-
Benzo(k)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(a)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Indeno(1.2.3.cd)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(g.h.i)perylene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Dibenz(a.h)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010	-	<0.010	
Sum of 16 PAH	S-PAHGMS01	0.160	mg/kg DW	<0.160		<0.160	-	<0.160	
Sum of carcinogenic PAH	S-PAHGMS01	0.070	mg/kg DW	<0.070		<0.070		<0.070	
Sum of non carcinogenic PAH	S-PAHGMS01	0.090	mg/kg DW	<0.090		<0.090		<0.090	
PCBs									
PCB 28	S-PCBECD04	0.0030	mg/kg DW	<0.0030	-	<0.0030		<0.0030	
PCB 52	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		< 0.0030	
PCB 101	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030	-	<0.0030	
PCB 118	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 138	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		< 0.0030	
PCB 153	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 180	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
Sum of 7 PCBs	S-PCBECD04	0.021	mg/kg DW	<0.021		<0.021		<0.021	
Petroleum Hydrocarbons									
C10 - C12 Fraction	S-TPHFID01	2	mg/kg DW	<2		<2		<2	
C10 - C40 Fraction	S-TPHFID01	20	mg/kg DW	<20		<20		<20	,
C12 - C16 Fraction	S-TPHFID01	3	mg/kg DW	<3		<3		<3	-
C16 - C35 Fraction	S-TPHFID01	10	mg/kg DW	<10		<10		<10	
C35 - C40 Fraction	S-TPHFID01	5	mg/kg DW	<5		<5		<5	

ALS Czech Republic, s.r.o. Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 12 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000	10	1110000	11	1110000)12
		Laborat	ory sample ID	PR101018	5010	PR101018	5011	PR101018	5012
		Client sampli	ing date / time	05-APR-2010	00:00	05-APR-201	00:00	05-APR-201	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Physical Parameters				10000			·		
Loss on Ignition @ 550°C	S-LI550GR	0.10	% DW	8.28	±0.42	10.4	±0.52	11.7	±0.59
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	68.4	±3.42	66.9	±3.34	56.6	±2.83
Agregate Parameters							,		
Phenol Index	S-PHI-PHO	0.20	mg/kg DW	0.37	±0.14	<0.20		7.69	±2.69
Nonmetallic Inorganic Paramete		- 00	A DIA	-00				-00	
Nitrates	S-NO3-SPC	20	mg/kg DW	<20		<20		<20	
Sulphate as SO4 2-	S-SO4-GR	0.10	% DW	<0.10		<0.10		<0.10	
Nitrate as N	S-NO3-SPC	4.0	mg/kg DW	<4.0		<4.0		<4.0	
Extractable Metals / Major Catio		0.50	mariles DM/	0.50		2.00		4.00	
Antimony	S-METAXHB1	0.50	mg/kg DW	2.53	±0.51	2.00	±0.40	1.60	±0.32
Arsenic	S-METAXHB1	0.50	mg/kg DW	10.1	±2.02	8.58	±1.72	4.80	±0.96
Barium	S-METAXHB1	0.20	mg/kg DW	334	±66.8	298	±59.6	308	±61.7
Beryllium	S-METAXHB1	0.010	mg/kg DW	6.34	±1.27	3.92	±0.784	3.54	±0.708
Cadmium	S-METAXHB1	0.40	mg/kg DW	<0.40		<0.40		<0.40	_
Chromium	S-METAXHB1	0.50	mg/kg DW	12.2	±2.43	2.16	±0.43	31.6	±6.32
Cobalt	S-METAXHB1	0.20	mg/kg DW	13.6	±2.72	57.2	±11.4	51.9	±10.4
Copper	S-METAXHB1	1.0	mg/kg DW	7.7	±1.5	15.5	±3.1	24.4	±4.9
Iron	S-METAXHB1	10	mg/kg DW	69700	±13900	108000	±21500	93200	±18600
Lead	S-METAXHB1	1.0	mg/kg DW	11.1	±2.2	3.6	±0.7	4.0	±0.8
Lithium	S-METAXHB1	1.0	mg/kg DW	14.6	±2.9	32.0	±6.4	16.6	±3.3
Manganese	S-METAXHB1	0.50	mg/kg DW	2460	±493	1550	±309	1800	±359
Mercury	S-METAXHB1	0.20	mg/kg DW	<0.20		<0.20		<0.20	
Molybdenum	S-METAXHB1	0.40	mg/kg DW	6.24	±1.25	1.20	±0.24	<0.40	
Nickel	S-METAXHB1	1.0	mg/kg DW	8.6	±1.7	5.1	±1.0	18.4	±3.7
Phosphorus	S-METAXHB1	5.0	mg/kg DW	280	±56.0	987	±197	1020	±203
Silver	S-METAXHB1	0.50	mg/kg DW	0.54	±0.11	<0.50		< 0.50	
Strontium	S-METAXHB1	0.10	mg/kg DW	88.0	±17.6	49.3	±9.87	19.0	±3.81
Thallium	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		< 0.50	-
Tin	S-METAXHB1	1.0	mg/kg DW	4.2	±0.8	<1.0		1.2	±0.2
Vanadium	S-METAXHB1	0.10	mg/kg DW	101	±20.2	252	±50.3	59.0	±11.8
Zinc	S-METAXHB1	3.0	mg/kg DW	210	±41.9	98.7	±19.7	92.9	±18.6
BTEX							·		
Benzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		< 0.020	
Toluene	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	-
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		< 0.020	
ortho-Xylene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		< 0.010	
Sum of TEX	S-VOCGMS01	0.150	mg/kg DW	<0.150		<0.150	-	<0.150	
Sum of BTEX	S-VOCGMS01	0.170	mg/kg DW	<0.170	-	<0.170		<0.170	
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Halogenated Volatile Organic Co	ompounds						·		
Dichlorodifluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10	- 1	<0.10	- 1	<0.10	
Vinyl chloride	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloromethane	S-VOCGMS04	1.0	mg/kg DW	<1.0	-	<1.0		<1.0	
trans-1.2-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
Dichloromethane	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
1.1-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chloroethane	S-VOCGMS04	0.10	mg/kg DW	<0.10	_	<0.10		<0.10	
cis-1.2-Dichloroethene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Trichlorofluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
	S-VOCGMS04	0.010	mg/kg DW	<0.010		<0.010		<0.10	
1.1-Dichloroethane Bromochloromethane	S-VOCGMS01 S-VOCGMS04	0.010	mg/kg DW	<0.010		<0.010		<0.010	
2.2-Dichloropropane	S-VOCGMS04 S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
		0.030	mg/kg DW	<0.030		<0.030		<0.030	
Chloroform	S-VOCGMS01	0.030	mg/kg DW	~0.000		~0.030		~0.030	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 13 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Clie	ent sample ID	1110000	10	1110000	11	1110000	12
		Laborate	ory sample ID	PR101018	5010	PR101018	5011	PR101018	5012
	C	lient sampli	ing date / time	05-APR-2010	00:00	05-APR-2010	00:00	05-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Halogenated Volatile Organic Comp	ounds - Continued								
1.1-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2-Dichloroethane	S-VOCGMS01	0.100	mg/kg DW	<0.100		<0.100		<0.100	
1.1.1-Trichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dibromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
cis-1.3-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Tetrachloromethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromodichloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	-
trans-1.3-Dichloropropene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Trichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
1.1.2-Trichloroethane	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.2-Dibromoethane (EDB)	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Dibromochloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Bromobenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Tetrachloroethene	S-VOCGMS01	0.020	mg/kg DW	0.030	±0.012	0.031	±0.012	0.025	±0.010
1.1.1.2-Tetrachloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
2-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chlorobenzene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
4-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Bromoform	S-VOCGMS01	0.040	mg/kg DW	<0.040		< 0.040		<0.040	
1.1.2.2-Tetrachloroethane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		< 0.020		<0.020	
1.2-Dibromo-3-chloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.4-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.2.4-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg DW	<0.030		< 0.030		<0.030	
Hexachlorobutadiene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3.5-Trichlorobenzene	S-VOCGMS01	0.050	mg/kg DW	<0.050		< 0.050		<0.050	
1.2-Dichloropropane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Sum of 3 Dichlorobenzenes	S-VOCGMS01	0.060	mg/kg DW	<0.060		< 0.060		<0.060	
Sum of 4 Trihalomethanes	S-VOCGMS01	0.110	mg/kg DW	<0.110		<0.110		<0.110	-
Non-Halogenated Volatile Organic C	Compounds								
Isopropylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
n-Propylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.4-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
p-Isopropyltoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3.5-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Styrene	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
sec-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
tert-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
n-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Naphthalene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Methyl tert-Butyl Ether (MTBE)	S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.050		<0.050	
tert-Butyl alcohol	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
Sum of BTEXS	S-VOCGMS01	0.210	mg/kg DW	<0.210		<0.210		<0.210	
Polycyclic Aromatics Hydrocarbons	(PAHs)								
Naphthalene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Acenaphthylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Acenaphthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluorene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Phenanthrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010	1	<0.010		<0.010	
	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 ; 20-APR-2010

 Page
 ; 14 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000	10	1110000	11	1110000	12
		Laborate	ory sample ID	PR1010185	5010	PR1010185	5011	PR1010185	5012
		Client sampli	ing date / time	05-APR-2010	00:00	05-APR-2010	00:00	05-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	MÜ	Result	MU
Polycyclic Aromatics Hydrocarbo	ns (PAHs) - Continued								
Pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benz(a)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chrysene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(b)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010	_	<0.010		<0.010	
Benzo(k)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(a)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Indeno(1.2.3.cd)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	-
Benzo(g.h.i)perylene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Dibenz(a.h)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Sum of 16 PAH	S-PAHGMS01	0.160	mg/kg DW	<0.160		<0.160		<0.160	
Sum of carcinogenic PAH	S-PAHGMS01	0.070	mg/kg DW	<0.070		<0.070		<0.070	
Sum of non carcinogenic PAH	S-PAHGMS01	0.090	mg/kg DW	<0.090		<0.090		<0.090	
PCBs									
PCB 28	S-PCBECD04	0.0030	mg/kg DW	<0.0030	-	<0.0030		<0.0030	
PCB 52	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		< 0.0030	
PCB 101	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 118	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 138	S-PCBECD04	0.0030	mg/kg DW	<0.0030	-	<0.0030		<0.0030	
PCB 153	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 180	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
Sum of 7 PCBs	S-PCBECD04	0.021	mg/kg DW	<0.021		<0.021		<0.021	
Petroleum Hydrocarbons									
C10 - C12 Fraction	S-TPHFID01	2	mg/kg DW	<2		<2		<2	
C10 - C40 Fraction	S-TPHFID01	20	mg/kg DW	<20		<20		<20	
C12 - C16 Fraction	S-TPHFID01	3	mg/kg DW	<3		<3		<3	
C16 - C35 Fraction	S-TPHFID01	10	mg/kg DW	<10		<10		<10	
C35 - C40 Fraction	S-TPHFID01	5	mg/kg DW	<5		<5		<5	

ALS Czech Republic, s.r.o. Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 15 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000 (1/2 1110000 1110000	13+1/2	1110000	14	1110000	15
		Laborat	ory sample ID	PR101018		PR101018	5014	PR101018	5015
		Client sampl	ing date / time	05-APR-2010	00:00	05-APR-2010	00:00	06-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	ми	Result	MU
Physical Parameters									
Loss on Ignition @ 550°C	S-LI550GR	0.10	% DW	5.26	±0.27	5.91	±0.30	0.39	±0.07
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	61.2	±3.06	67.2	±3.36	81.7	±4.08
Agregate Parameters									
Phenol Index	S-PHI-PHO	0.20	mg/kg DW	0.96	±0.34	0.83	±0.29	<0.20	
Nonmetallic Inorganic Paramete	ers								
Nitrates	S-NO3-SPC	20	mg/kg DW	<20		<20		<20	
Sulphate as SO4 2-	S-SO4-GR	0.10	% DW	<0.10		<0.10		<0.10	
Nitrate as N	S-NO3-SPC	4.0	mg/kg DW	<4.0		<4.0		<4.0	-
Extractable Metals / Major Catio		0.50		0.50					
Antimony	S-METAXHB1	0.50	mg/kg DW	<0.50		0.54	±0.11	0.50	±0.10
Arsenic	S-METAXHB1	0.50	mg/kg DW	8.48	±1.70	3.67	±0.73	1.10	±0.22
Barium	S-METAXHB1	0.20	mg/kg DW	205	±41.1	284	±56.9	21.0	±4.20
Beryllium	S-METAXHB1	0.010	mg/kg DW	4.45	±0.890	2.59	±0.519	0.374	±0.075
Cadmium	S-METAXHB1	0.40	mg/kg DW	<0.40		<0.40		<0.40	
Chromium	S-METAXHB1	0.50	mg/kg DW	16.0	±3.20	2.54	±0.51	14.0	±2.80
Cobalt	S-METAXHB1	1.0	mg/kg DW	10.9	±2.18	51.2	±10.2	23.9	±4.78
Copper	S-METAXHB1	1.0	mg/kg DW	11.6	±2.3	26.0	±5.2	27.9	±5.6
Iron	S-METAXHB1	1.0	mg/kg DW	46500	±9300	86600	±17300	39800	±7970
Lead	S-METAXHB1	1.0	mg/kg DW	7.4	±1.5	2.7	±0.5	1.4 <1.0	±0.3
Lithium	S-METAXHB1	0.50	mg/kg DW	9.7	±1.9	23.1	±4.6		
Manganese	S-METAXHB1	-	mg/kg DW	1380	±276	1590	±318	599 <0.20	±120
Mercury	S-METAXHB1	0.20	mg/kg DW mg/kg DW	<0.20		<0.20 <0.40		<0.20	
Molybdenum	S-METAXHB1	1.0		3.14 7.3	±0.63	13.9		26.9	
Nickel	S-METAXHB1	5.0	mg/kg DW	499	±1.4		±2.8	2080	±5.4
Phosphorus	S-METAXHB1	0.50	mg/kg DW	<0.50	±99.8	1330 <0.50	±266	<0.50	±416
Silver	S-METAXHB1	0.30	mg/kg DW mg/kg DW		±3.92			45.8	
Strontium	S-METAXHB1	0.10		19.6 <0.50	±3.92	75.4 <0.50	±15.1	<0.50	±9.16
Thallium	S-METAXHB1	1.0	mg/kg DW mg/kg DW	5.1		<1.0		<1.0	
Tin Van adiana	S-METAXHB1	0.10	mg/kg DW	89.9	±1.0	80.7		73.0	
Vanadium	S-METAXHB1	3.0	mg/kg DW	164	±18.0	107	±16.1	44.4	±14.6
Zinc	S-METAXHB1	3.0	nig/kg Dvv	104	±32.1	107	±21.4	44.4	20.9
BTEX Benzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Toluene	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
ortho-Xylene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of TEX	S-VOCGMS01	0.150	mg/kg DW	<0.150		<0.150		<0.150	
Sum of BTEX	S-VOCGMS01	0.170	mg/kg DW	<0.170		<0.170		<0.170	
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Halogenated Volatile Organic Co									
Dichlorodifluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Vinyl chloride	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloromethane	S-VOCGMS04	1.0	mg/kg DW	<1.0		<1.0		<1.0	-
trans-1.2-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
Bromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Dichloromethane	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
1.1-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
Chloroethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
cis-1.2-Dichloroethene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Trichlorofluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.1-Dichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
Bromochloromethane	S-VOCGMS04	0.20	mg/kg DW	<0.20		<0.20		<0.20	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 16 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000 (1/2 1110000 11100004	13+1/2	1110000	14	1110000	15
		Laborate	ory sample ID	PR1010185		PR101018	5014	PR101018	5015
	c		ng date / time	05-APR-2010		05-APR-2010		06-APR-2010	
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Halogenated Volatile Organic Com	nounds - Continued								
2.2-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloroform	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
1.1-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10	_	<0.10		<0.10	-
1.2-Dichloroethane	S-VOCGMS01	0.100	mg/kg DW	<0.100		<0.100		<0.100	
1.1.1-Trichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dibromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
cis-1.3-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
Tetrachloromethane	S-VOCGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Bromodichloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
trans-1.3-Dichloropropene	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	-
1.3-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10	_	<0.10		<0.10	
Trichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
1.1.2-Trichloroethane	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.2-Dibromoethane (EDB)	S-VOCGMS04	0.10	mg/kg DW	<0.10	_	<0.10		<0.10	
1.2.3-Trichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Dibromochloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Bromobenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Tetrachloroethene	S-VOCGMS01	0.020	mg/kg DW	<0.020		0.044	±0.017	0.028	±0.011
1.1.1.2-Tetrachloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
2-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
Chlorobenzene	S-VOCGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
4-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
Bromoform	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.1.2.2-Tetrachloroethane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020	_	<0.020		<0.020	-
1.2-Dibromo-3-chloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.4-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.2.4-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg DW	<0.030	-	<0.030		<0.030	
Hexachlorobutadiene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3.5-Trichlorobenzene	S-VOCGMS01	0.050	mg/kg DW	<0.050	-	<0.050		<0.050	
1.2-Dichloropropane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Sum of 3 Dichlorobenzenes	S-VOCGMS01	0.060	mg/kg DW	<0.060		<0.060		<0.060	
Sum of 4 Trihalomethanes	S-VOCGMS01	0.110	mg/kg DW	<0.110		<0.110		<0.110	
Non-Halogenated Volatile Organic		0.40		-0.40		-0.40		-0.40	
Isopropylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
n-Propylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10 <0.10		<0.10 <0.10		<0.10 <0.10	
1.2.4-Trimethylbenzene	S-VOCGMS04		mg/kg DW						
p-Isopropyltoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3.5-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Styrene	S-VOCGMS01	0.040	mg/kg DW	<0.040 <0.10		<0.040 <0.10		<0.040	
sec-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW mg/kg DW	<0.10		<0.10		<0.10 <0.10	
tert-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
n-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Naphthalene Methyl fort Butyl Ether (MTRE)	S-VOCGMS04	0.050	mg/kg DW	<0.10		<0.10		<0.10	
Methyl tert-Butyl Ether (MTBE)	S-VOCGMS01	0.030	mg/kg DW	<0.80		<0.80		<0.00	
tert-Butyl alcohol	S-VOCGMS01	0.210	mg/kg DW	<0.00		<0.210		<0.00	
Sum of BTEXS	S-VOCGMS01	0.210	ing/kg DVV	~0.210		~0.210		~0.210	
Polycyclic Aromatics Hydrocarbor Naphthalene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Acenaphthylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
- '	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Acenaphthene	O-PARIGINIOUI	0.010	mg/kg DVV	-0.010		30.010		30.010	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 17 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Clie	ent sample ID	1110000 (1/2 1110000 ² 11100004	13+1/2	1110000	14	1110000	15
		Laborato	ory sample ID	PR1010185	,	PR1010185	5014	PR1010185	5015
	(ing date / time	05-APR-2010		05-APR-2010		06-APR-2010	
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Polycyclic Aromatics Hydrocarbo									
Fluorene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Phenanthrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
Fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benz(a)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Chrysene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(b)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(k)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(a)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Indeno(1.2.3.cd)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(g.h.i)perylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dibenz(a.h)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of 16 PAH	S-PAHGMS01	0.160	mg/kg DW	<0.160	-	<0.160		<0.160	-
Sum of carcinogenic PAH	S-PAHGMS01	0.070	mg/kg DW	<0.070		<0.070		<0.070	
Sum of non carcinogenic PAH	S-PAHGMS01	0.090	mg/kg DW	<0.090		<0.090		<0.090	
PCBs				200					
PCB 28	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 52	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 101	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 118	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 138	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 153	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 180	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
Sum of 7 PCBs	S-PCBECD04	0.021	mg/kg DW	<0.021		<0.021		<0.021	
Petroleum Hydrocarbons									
C10 - C12 Fraction	S-TPHFID01	2	mg/kg DW	<2		<2		<2	
C10 - C40 Fraction	S-TPHFID01	20	mg/kg DW	86	±26	<20		<20	
C12 - C16 Fraction	S-TPHFID01	3	mg/kg DW	5	±1	<3		<3	
C16 - C35 Fraction	S-TPHFID01	10	mg/kg DW	80	±24	<10		<10	
C35 - C40 Fraction	S-TPHFID01	5	mg/kg DW	<5		<5		<5	-

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

Issue Date : 20-APR-2010 Page Work Order : 18 of 48 : PR1010185 : AmbiPar Control, LDa. Client

Sub-Matrix: SOIL		Cli	ent sample ID	1110000	16	1110000)17	1110000	18
		Laborat	ory sample ID	PR101018	5016	PR101018	5017	PR101018	5018
		Client sampl	ing date / time	06-APR-201	00:00	06-APR-201	00:00	06-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	ми	Result	MU	Result	MU
Physical Parameters	3 30 1 1 1 1			0011111					
Loss on Ignition @ 550°C	S-LI550GR	0.10	% DW	0.83	±0.08	6.27	±0.32	7.51	±0.38
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	70.9	±3.55	55.2	±2.76	68.9	±3.44
Agregate Parameters									
Phenol Index	S-PHI-PHO	0.20	mg/kg DW	0.34	±0.13	0.76	±0.27	<0.20	
Nonmetallic Inorganic Paramete	rs								
Nitrates	S-NO3-SPC	20	mg/kg DW	<20		<20		<20	
Sulphate as SO4 2-	S-SO4-GR	0.10	% DW	<0.10		<0.10		<0.10	
Nitrate as N	S-NO3-SPC	4.0	mg/kg DW	<4.0		<4.0		<4.0	
Extractable Metals / Major Cation	ns								
Antimony	S-METAXHB1	0.50	mg/kg DW	<0.50		3.03	±0.60	<0.50	
Arsenic	S-METAXHB1	0.50	mg/kg DW	<0.50		3.47	±0.69	7.95	±1.59
Barium	S-METAXHB1	0.20	mg/kg DW	101	±20.2	310	±62.0	241	±48.3
Beryllium	S-METAXHB1	0.010	mg/kg DW	0.281	±0.056	0.873	±0.174	4.92	±0.985
Cadmium	S-METAXHB1	0.40	mg/kg DW	<0.40		<0.40		1.48	±0.30
Chromium	S-METAXHB1	0.50	mg/kg DW	12.9	±2.57	34.9	±6.99	7.23	±1.45
Cobalt	S-METAXHB1	0.20	mg/kg DW	20.2	±4.04	46.5	±9.30	18.8	±3.76
Copper	S-METAXHB1	1.0	mg/kg DW	30.3	±6.1	29.2	±5.8	17.7	±3.5
Iron	S-METAXHB1	10	mg/kg DW	26500	±5310	75600	±15100	57800	±11600
Lead	S-METAXHB1	1.0	mg/kg DW	<1.0		1.9	±0.4	9.8	±2.0
Lithium	S-METAXHB1	1.0	mg/kg DW	<1.0		9.4	±1.9	17.6	±3.5
Manganese	S-METAXHB1	0.50	mg/kg DW	587	±117	1070	±214	2780	±556
Mercury	S-METAXHB1	0.20	mg/kg DW	<0.20		<0.20		<0.20	
Molybdenum	S-METAXHB1	0.40	mg/kg DW	<0.40		0.42	±0.08	2.28	±0.46
Nickel	S-METAXHB1	1.0	mg/kg DW	42.8	±8.6	29.4	±5.9	6.3	±1.2
Phosphorus	S-METAXHB1	5.0	mg/kg DW	727	±145	1990	±399	1900	±380
Silver	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		<0.50	
Strontium	S-METAXHB1	0.10	mg/kg DW	69.2	±13.8	204	±40.8	88.6	±17.7
Thallium	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		<0.50	
Tin	S-METAXHB1	1.0	mg/kg DW	<1.0		<1.0		<1.0	
Vanadium	S-METAXHB1	0.10	mg/kg DW	47.3	±9.46	128	±25.5	62.1	±12.4
Zinc	S-METAXHB1	3.0	mg/kg DW	29.5	±5.9	73.4	±14.7	304	±60.8
BTEX	1 / 12 / 1			507011					
Benzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		< 0.020	
Toluene	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW	<0.020		< 0.020		<0.020	
ortho-Xylene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of TEX	S-VOCGMS01	0.150	mg/kg DW	<0.150		<0.150		<0.150	
Sum of BTEX	S-VOCGMS01	0.170	mg/kg DW	<0.170		<0.170		<0.170	-
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW	<0.030		< 0.030		< 0.030	
Halogenated Volatile Organic Co	ompounds								
Dichlorodifluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Vinyl chloride	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloromethane	S-VOCGMS04	1.0	mg/kg DW	<1.0		<1.0		<1.0	
trans-1.2-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
Dichloromethane	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
1.1-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chloroethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
cis-1.2-Dichloroethene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	-
Trichlorofluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.1-Dichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromochloromethane	S-VOCGMS04	0.20	mg/kg DW	<0.20		<0.20		<0.20	
2.2-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
	5 . 5 5 5 miles								

ALS Czech Republic, s.r.o. Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 19 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL			ent sample ID	1110000		1110000		1110000	
			ory sample ID	PR101018		PR101018		PR101018	
	C	lient sampli	ng date / time	06-APR-2010	00:00	06-APR-2010	00:00	06-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Halogenated Volatile Organic Com	pounds - Continued			100					
1.1-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2-Dichloroethane	S-VOCGMS01	0.100	mg/kg DW	<0.100	-	<0.100		<0.100	
1.1.1-Trichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dibromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
cis-1.3-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Tetrachloromethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromodichloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
trans-1.3-Dichloropropene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Trichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
1.1.2-Trichloroethane	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.2-Dibromoethane (EDB)	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
Dibromochloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Bromobenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
Tetrachloroethene	S-VOCGMS01	0.020	mg/kg DW	0.027	±0.011	0.041	±0.016	0.036	±0.014
1.1.1.2-Tetrachloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
2-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
Chlorobenzene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
4-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Bromoform	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.1.2.2-Tetrachloroethane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
1.2-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.2-Dibromo-3-chloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.4-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.2.4-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Hexachlorobutadiene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3.5-Trichlorobenzene	S-VOCGMS01	0.050	mg/kg DW	<0.050	_	<0.050		<0.050	
1.2-Dichloropropane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Sum of 3 Dichlorobenzenes	S-VOCGMS01	0.060	mg/kg DW	<0.060		<0.060		<0.060	
Sum of 4 Trihalomethanes	S-VOCGMS01	0.110	mg/kg DW	<0.110		<0.110		<0.110	
Non-Halogenated Volatile Organic									
Isopropylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10	1	<0.10		<0.10	
n-Propylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.4-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
p-Isopropyltoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3.5-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
Styrene	S-VOCGMS01	0.040	mg/kg DW	<0.040	-	<0.040		<0.040	
sec-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
tert-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
n-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
Naphthalene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Methyl tert-Butyl Ether (MTBE)	S-VOCGMS01	0.050	mg/kg DW	<0.050	- 1	<0.050		<0.050	
tert-Butyl alcohol	S-VOCGMS01	0.80	mg/kg DW	<0.80	-	<0.80		<0.80	
Sum of BTEXS	S-VOCGMS01	0.210	mg/kg DW	<0.210	-	<0.210	-	<0.210	
Polycyclic Aromatics Hydrocarbon				8 1 1 1 1 1 1					
Naphthalene	S-PAHGMS01	0.010	mg/kg DW	0.010	±0.003	<0.010		<0.010	
Acenaphthylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Acenaphthene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	-
Fluorene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Phenanthrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
	ioilioo i								

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 20 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Clie	ent sample ID	1110000	16	1110000	17	1110000	18
		Laborate	ory sample ID	PR1010185	5016	PR1010185	5017	PR1010185	5018
	(Client sampli	ing date / time	06-APR-2010	00:00	06-APR-2010	00:00	06-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	MÜ	Result	MU
Polycyclic Aromatics Hydrocarbo	ons (PAHs) - Continued								
Pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benz(a)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chrysene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(b)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010	_	<0.010		<0.010	
Benzo(k)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(a)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Indeno(1.2.3.cd)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Benzo(g.h.i)perylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dibenz(a.h)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of 16 PAH	S-PAHGMS01	0.160	mg/kg DW	<0.160		<0.160		<0.160	
Sum of carcinogenic PAH	S-PAHGMS01	0.070	mg/kg DW	<0.070		<0.070		<0.070	
Sum of non carcinogenic PAH	S-PAHGMS01	0.090	mg/kg DW	<0.090		<0.090		<0.090	
PCBs									
PCB 28	S-PCBECD04	0.0030	mg/kg DW	<0.0030	-	<0.0030		<0.0030	
PCB 52	S-PCBECD04	0.0030	mg/kg DW	<0.0030	-	<0.0030		< 0.0030	
PCB 101	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		< 0.0030	
PCB 118	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		< 0.0030	
PCB 138	S-PCBECD04	0.0030	mg/kg DW	<0.0030	-	<0.0030		<0.0030	
PCB 153	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 180	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
Sum of 7 PCBs	S-PCBECD04	0.021	mg/kg DW	<0.021		<0.021		<0.021	
Petroleum Hydrocarbons									
C10 - C12 Fraction	S-TPHFID01	2	mg/kg DW	<2		<2		<2	,
C10 - C40 Fraction	S-TPHFID01	20	mg/kg DW	<20		<20		<20	
C12 - C16 Fraction	S-TPHFID01	3	mg/kg DW	<3	_	<3		<3	-
C16 - C35 Fraction	S-TPHFID01	10	mg/kg DW	<10		<10		<10	
C35 - C40 Fraction	S-TPHFID01	5	mg/kg DW	<5		<5		<5	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 21 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000	19	1110000	20	1110000)21
		Laborate	ory sample ID	PR101018	5019	PR101018	5020	PR101018	5021
	(Client sampli	ing date / time	06-APR-2010	00:00	06-APR-2010	00:00	06-APR-201	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	ми	Result	MU
Physical Parameters				00111111			·		
Loss on Ignition @ 550°C	S-LI550GR	0.10	% DW	22.9	±1.15	6.59	±0.34	10.6	±0.53
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	53.8	±2.69	57.0	±2.85	62.6	±3.13
Agregate Parameters		10 11					·		
Phenol Index	S-PHI-PHO	0.20	mg/kg DW	1.36	±0.48	0.50	±0.18	0.79	±0.28
Nonmetallic Inorganic Paramete	rs								
Nitrates	S-NO3-SPC	20	mg/kg DW	<20		<20		<20	
Sulphate as SO4 2-	S-SO4-GR	0.10	% DW	<0.10		0.12	±0.01	<0.10	
Nitrate as N	S-NO3-SPC	4.0	mg/kg DW	<4.0		<4.0		<4.0	
Extractable Metals / Major Cation		0.50		-0.50		-0.50			
Antimony	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		0.56	±0.11
Arsenic	S-METAXHB1	0.50	mg/kg DW	3.05	±0.61	5.39	±1.08	9.28	±1.86
Barium	S-METAXHB1	0.20	mg/kg DW	148	±29.5	80.3	±16.0	126	±25.2
Beryllium	S-METAXHB1	0.010	mg/kg DW	1.82	±0.364	2.51	±0.503	6.76	±1.35
Cadmium	S-METAXHB1	0.40	mg/kg DW	1.67	±0.33	<0.40		<0.40	
Chromium	S-METAXHB1	0.50	mg/kg DW	1.14	±0.23	3.65	±0.73	6.34	±1.27
Cobalt	S-METAXHB1	0.20	mg/kg DW	2.02	±0.40	7.15	±1.43	22.3	±4.46
Copper	S-METAXHB1	1.0	mg/kg DW	7.5	±1.5	2.8	±0.6	3.8	±0.8
Iron	S-METAXHB1	10	mg/kg DW	10200	±2040	46100	±9220	64000	±12800
Lead	S-METAXHB1	1.0	mg/kg DW	4.9	±1.0	11.4	±2.3	5.8	±1.2
Lithium	S-METAXHB1	1.0	mg/kg DW	1.8	±0.4	10.8	±2.2	11.1	±22
Manganese	S-METAXHB1	0.50	mg/kg DW	368	±73.6	1040	±208	1240	±249
Mercury	S-METAXHB1	0.20	mg/kg DW	<0.20		0.32	±0.06	<0.20	
Molybdenum	S-METAXHB1	0.40	mg/kg DW	3.18	±0.64	2.15	±0.43	1.66	±0.33
Nickel	S-METAXHB1	1.0	mg/kg DW	<1.0		3.5	±0.7	4.3	±0.8
Phosphorus	S-METAXHB1	5.0	mg/kg DW	2220	±443	147	±29.4	1210	±242
Silver	S-METAXHB1	0.50	mg/kg DW	<0.50		1.91	±0.38	<0.50	
Strontium	S-METAXHB1	0.10	mg/kg DW	85.0	±17.0	33.5	±6.70	91.4	±18.3
Thallium	S-METAXHB1	0.50	mg/kg DW	<0.50	-	<0.50		<0.50	
Tin	S-METAXHB1	1.0	mg/kg DW	<1.0		2.8	±0.6	<1.0	
Vanadium	S-METAXHB1	0.10	mg/kg DW	4.64	±0.93	28.1	±5.61	136	±27.2
Zinc	S-METAXHB1	3.0	mg/kg DW	171	±34.3	199	±39.8	69.9	±14.0
BTEX	0.11000011001	0.000	ma/ka DM	<0.000	1	<0.020	-	40.020	
Benzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Toluene	S-VOCGMS01	0.10	mg/kg DW mg/kg DW	<0.10 <0.020		<0.10		<0.10 <0.020	,
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	-
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.010		<0.020	
ortho-Xylene	S-VOCGMS01	0.010		<0.010		<0.010		<0.150	
Sum of TEX	S-VOCGMS01	0.130	mg/kg DW	<0.130		<0.170		<0.170	
Sum of BTEX	S-VOCGMS01	0.030	mg/kg DW mg/kg DW	<0.170		<0.170		<0.030	
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DVV	<0.030		<0.030		<0.030	
Halogenated Volatile Organic Co	S-VOCGMS04	0.10	mg/kg DW	<0.10	1	<0.10		<0.10	-
Dichlorodifluoromethane Vinyl chloride		0.10	mg/kg DW	<0.10		<0.10		<0.10	
Vinyl chloride Chloromethane	S-VOCGMS01 S-VOCGMS04	1.0	mg/kg DW	<1.0		<1.0		<1.0	
trans-1.2-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromomethane	S-VOCGMS01	0.10	mg/kg DW	<0.010		<0.10		<0.10	
Dichloromethane	S-VOCGMS01	0.80	mg/kg DW	<0.10		<0.10		<0.80	
1.1-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chloroethane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
cis-1.2-Dichloroethene	S-VOCGMS04	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Trichlorofluoromethane	S-VOCGMS01	0.10	mg/kg DW	<0.020		<0.020		<0.020	
1.1-Dichloroethane		0.010	mg/kg DW	<0.010		<0.010		<0.010	
	S-VOCGMS01 S-VOCGMS04	0.010	mg/kg DW	<0.010		<0.010		<0.20	
Bromochloromethane 2.2-Dichloropropane		0.10	mg/kg DW	<0.10		<0.10		<0.10	
	S-VOCGMS04	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Chloroform	S-VOCGMS01	0.030	ilig/kg DVV	~0.030		~0.030		~0.030	

ALS Czech Republic, s.r.o. Part of the ALS Laboratory Group

 Issue Date
 ; 20-APR-2010

 Page
 ; 22 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Sub-Matrix: SOIL		Clie	ent sample ID	1110000	19	1110000	20	1110000	21
		Laborate	ory sample ID	PR101018	5019	PR1010185	5020	PR101018	5021
	0		ing date / time	06-APR-2010	00:00	06-APR-2010	00:00	06-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Halogenated Volatile Organic Comp	oounds - Continued			001011					
1.1-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2-Dichloroethane	S-VOCGMS01	0.100	mg/kg DW	<0.100		<0.100		<0.100	
1.1.1-Trichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dibromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
cis-1.3-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Tetrachloromethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromodichloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
trans-1.3-Dichloropropene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Trichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
1.1.2-Trichloroethane	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.2-Dibromoethane (EDB)	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Dibromochloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Bromobenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Tetrachloroethene	S-VOCGMS01	0.020	mg/kg DW	0.032	±0.013	0.029	±0.011	0.030	±0.012
1.1.1.2-Tetrachloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
2-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chlorobenzene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
4-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Bromoform	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.1.2.2-Tetrachloroethane	S-VOCGMS01	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
1.2-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.2-Dibromo-3-chloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.4-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.2.4-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Hexachlorobutadiene	S-VOCGMS04	0.10	mg/kg DW	<0.10 <0.020		<0.10 <0.020		<0.10 <0.020	
1.2.3-Trichlorobenzene	S-VOCGMS01	0.020	mg/kg DW mg/kg DW	<0.020		<0.020		<0.050	
1.3.5-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg DW	<0.00		<0.00		<0.00	
1.2-Dichloropropane Sum of 3 Dichlorobenzenes	S-VOCGMS01 S-VOCGMS01	0.060	mg/kg DW	<0.060		<0.060		<0.060	
Sum of 4 Trihalomethanes	S-VOCGMS01	0.110	mg/kg DW	<0.110		<0.110		<0.110	
Non-Halogenated Volatile Organic (0.110	IIIg/kg DVV	40.110		40.110		40.110	
Isopropylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10	1	<0.10		<0.10	
n-Propylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.4-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
p-Isopropyltoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3.5-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Styrene	S-VOCGMS01	0.040	mg/kg DW	<0.040	-	<0.040		<0.040	
sec-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
tert-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
n-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Naphthalene	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
Methyl tert-Butyl Ether (MTBE)	S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.050		<0.050	
tert-Butyl alcohol	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
Sum of BTEXS	S-VOCGMS01	0.210	mg/kg DW	<0.210		<0.210		<0.210	
Polycyclic Aromatics Hydrocarbon		25:5		2					
Naphthalene	S-PAHGMS01	0.010	mg/kg DW	0.011	±0.003	<0.010		0.041	±0.012
Acenaphthylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Acenaphthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluorene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Phenanthrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 23 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Clie	ent sample ID	1110000	19	1110000	20	1110000	21
		Laborato	ory sample ID	PR1010185	5019	PR1010185	5020	PR1010185	5021
	(Client sampli	ng date / time	06-APR-2010	00:00	06-APR-2010	00:00	06-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Polycyclic Aromatics Hydrocarbo	ns (PAHs) - Continued								
Pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benz(a)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chrysene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(b)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(k)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(a)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Indeno(1.2.3.cd)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(g.h.i)perylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dibenz(a.h)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of 16 PAH	S-PAHGMS01	0.160	mg/kg DW	<0.160		<0.160		<0.160	
Sum of carcinogenic PAH	S-PAHGMS01	0.070	mg/kg DW	<0.070		<0.070		<0.070	
Sum of non carcinogenic PAH	S-PAHGMS01	0.090	mg/kg DW	<0.090		<0.090		<0.090	
PCBs									
PCB 28	S-PCBECD04	0.0030	mg/kg DW	<0.0030		< 0.0030		< 0.0030	
PCB 52	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 101	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 118	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 138	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 153	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 180	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
Sum of 7 PCBs	S-PCBECD04	0.021	mg/kg DW	<0.021		<0.021		<0.021	
Petroleum Hydrocarbons		1000		619 111					
C10 - C12 Fraction	S-TPHFID01	2	mg/kg DW	<2		<2		<2	
C10 - C40 Fraction	S-TPHFID01	20	mg/kg DW	28	±8	41	±12	<20	
C12 - C16 Fraction	S-TPHFID01	3	mg/kg DW	<3		<3		<3	-
C16 - C35 Fraction	S-TPHFID01	10	mg/kg DW	25	±8	30	±9	<10	
C35 - C40 Fraction	S-TPHFID01	5	mg/kg DW	<5		9	±3	<5	

ALS Czech Republic, s.r.o. Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 24 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000)22	1110000)23	1110000	24
		Laborate	ory sample ID	PR101018	5022	PR101018	5023	PR101018	5024
		Client sampli	ing date / time	06-APR-2010	00:00	06-APR-201	00:00	06-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	ми	Result	ми	Result	MU
Physical Parameters	1222100000			0010					
Loss on Ignition @ 550°C	S-LI550GR	0.10	% DW	6.00	±0.31	1.90	±0.12	8.28	±0.42
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	62.5	±3.13	77.7	±3.88	64.6	±3.23
Agregate Parameters									
Phenol Index	S-PHI-PHO	0.20	mg/kg DW	0.54	±0.19	0.80	±0.29	0.46	±0.17
Nonmetallic Inorganic Parameters	S								
Nitrates	S-NO3-SPC	20	mg/kg DW	<20		<20		<20	
Sulphate as SO4 2-	S-SO4-GR	0.10	% DW	<0.10		<0.10		0.13	±0.01
Nitrate as N	S-NO3-SPC	4.0	mg/kg DW	<4.0		<4.0		<4.0	
Extractable Metals / Major Cations		4.55							
Antimony	S-METAXHB1	0.50	mg/kg DW	<0.50		0.53	±0.11	<0.50	
Arsenic	S-METAXHB1	0.50	mg/kg DW	5.24	±1.05	2.08	±0.42	9.07	±1.81
Barium	S-METAXHB1	0.20	mg/kg DW	171	±34.3	79.6	±15.9	373	±74.6
Beryllium	S-METAXHB1	0.010	mg/kg DW	3.07	±0.613	0.704	±0.141	5.46	±1.09
Cadmium	S-METAXHB1	0.40	mg/kg DW	<0.40		<0.40		1.88	±0.38
Chromium	S-METAXHB1	0.50	mg/kg DW	3.48	±0.70	2.64	±0.53	4.59	±0.92
Cobalt	S-METAXHB1	0.20	mg/kg DW	29.4	±5.87	32.6	±6.53	8.83	±1.76
Copper	S-METAXHB1	1.0	mg/kg DW	6.7	±1.3	16.3	±3.3	18.7	±3.7
Iron	S-METAXHB1	10	mg/kg DW	69400	±13900	56300	±11200	45600	±9130
Lead	S-METAXHB1	1.0	mg/kg DW	4.5	±0.9	1.7	±0.3	8.4	±1.7
Lithium	S-METAXHB1	1.0	mg/kg DW	13.2	±2.6	3.7	±0.7	21.0	±4.2
Manganese	S-METAXHB1	0.50	mg/kg DW	1720	±343	1310	±263	2780	±556
Mercury	S-METAXHB1	0.20	mg/kg DW	<0.20		<0.20		<0.20	
Molybdenum	S-METAXHB1	0.40	mg/kg DW	1.35	±0.27	0.61	±0.12	1.52	±0.30
Nickel	S-METAXHB1	1.0	mg/kg DW	5.0	±1.0	9.3	±1.9	4.4	±0.9
Phosphorus	S-METAXHB1	5.0	mg/kg DW	2240	±449	2510	±502	2360	±472
Silver	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		<0.50	
Strontium	S-METAXHB1	0.10	mg/kg DW	76.6	±15.3	44.1	±8.82	146	±29.3
Thallium	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		<0.50	_
Tin	S-METAXHB1	1.0	mg/kg DW	<1.0		<1.0		<1.0	
Vanadium	S-METAXHB1	0.10	mg/kg DW	110	±22.1	48.4	±9.67	16.1	±3.21
Zinc	S-METAXHB1	3.0	mg/kg DW	128	±25.6	80.5	±16.1	393	±78.5
BTEX									
Benzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Toluene	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
ortho-Xylene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of TEX	S-VOCGMS01	0.150	mg/kg DW	<0.150		<0.150		<0.150	
Sum of BTEX	S-VOCGMS01	0.170	mg/kg DW	<0.170		<0.170		<0.170	-
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Halogenated Volatile Organic Con		0.40		-0.40		-0.40		-0.40	
Dichlorodifluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Vinyl chloride	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloromethane	S-VOCGMS04	1.0	mg/kg DW	<1.0		<1.0		<1.0	
trans-1.2-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Dichloromethane	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
1.1-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
Chloroethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
cis-1.2-Dichloroethene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Trichlorofluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10	-	<0.10	
1.1-Dichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010	-	<0.010	
Bromochloromethane	S-VOCGMS04	0.20	mg/kg DW	<0.20		<0.20	-	<0.20	
2.2-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Chloroform	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	

ALS Czech Republic, s.r.o.

Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 25 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Clie	ent sample ID	1110000	22	1110000	23	1110000	24
			ory sample ID	PR101018		PR101018		PR101018	
			ing date / time	06-APR-2010		06-APR-2010		06-APR-2010	
Dt	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Parameter		LUR	Unit	Result	MO	Result	MO	Result	INIU
Halogenated Volatile Organic Con	npounds - Continued S-VOCGMS04	0.10	mg/kg DW	<0.10	1	<0.10	- 1	<0.10	
1.1-Dichloropropylene 1.2-Dichloroethane	S-VOCGMS01	0.100	mg/kg DW	<0.100		<0.100		<0.100	
		0.010	mg/kg DW	<0.100		<0.100		<0.100	
1.1.1-Trichloroethane	S-VOCGMS01 S-VOCGMS04	0.10	mg/kg DW	<0.010		<0.010		<0.010	
Dibromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
cis-1.3-Dichloropropylene Tetrachloromethane	S-VOCGMS04 S-VOCGMS01	0.010	mg/kg DW	<0.10		<0.010		<0.010	
Bromodichloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.010		<0.010		<0.010	
trans-1.3-Dichloropropene	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Trichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
1.1.2-Trichloroethane	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2-Dibromoethane (EDB)		0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichloropropane Dibromochloromethane	S-VOCGMS04 S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
		0.020	mg/kg DW	<0.020		<0.020		<0.020	
Bromobenzene	S-VOCGMS04	0.020	mg/kg DW	0.024	±0.010	0.027	±0.011	0.031	±0.012
Tetrachloroethene	S-VOCGMS01	0.020	mg/kg DW	<0.024	±0.010	<0.010		<0.010	
1.1.1.2-Tetrachloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
2-Chlorotoluene	S-VOCGMS04	0.10		<0.10		<0.10		<0.10	
Chlorobenzene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
4-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10			
Bromoform	S-VOCGMS01	0.040	mg/kg DW mg/kg DW	<0.040		<0.040		<0.040 <0.10	
1.1.2.2-Tetrachloroethane	S-VOCGMS01	0.10		<0.10		<0.10		<0.10	
1.2-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.2-Dibromo-3-chloropropane	S-VOCGMS04	0.020	mg/kg DW	<0.10		<0.10		<0.10	
1.4-Dichlorobenzene	S-VOCGMS01		mg/kg DW						
1.3-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.2.4-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Hexachlorobutadiene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3.5-Trichlorobenzene	S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.050		<0.050	
1.2-Dichloropropane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Sum of 3 Dichlorobenzenes	S-VOCGMS01	0.060	mg/kg DW	<0.060		<0.060		<0.060	
Sum of 4 Trihalomethanes	S-VOCGMS01	0.110	mg/kg DW	<0.110		<0.110		<0.110	
Non-Halogenated Volatile Organic		0.10	ma/ka D\M	<0.10		<0.10		<0.10	
Isopropylbenzene	S-VOCGMS04		mg/kg DW			<0.10			
n-Propylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10				<0.10	
1.2.4-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10 <0.10		<0.10		<0.10 <0.10	
p-Isopropyltoluene	S-VOCGMS04	0.10	mg/kg DW			<0.10 <0.10			
1.3.5-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10 <0.040		<0.10		<0.10 <0.040	
Styrene	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.10	
sec-Butylbenzene	S-VOCGMS04		mg/kg DW						
tert-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
n-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Naphthalene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Methyl tert-Butyl Ether (MTBE)	S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.050		<0.050	
tert-Butyl alcohol	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
Sum of BTEXS	S-VOCGMS01	0.210	mg/kg DW	<0.210		<0.210		<0.210	
Polycyclic Aromatics Hydrocarbo		0.010	ma/ka DIM	<0.040		0.005	10.007	<0.010	
Naphthalene	S-PAHGMS01	0.010	mg/kg DW	<0.010		0.025	±0.007		
Acenaphthylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Acenaphthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
Fluorene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Phenanthrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-

ALS Czech Republic, s.r.o. Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 26 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000	22	1110000	23	11100002	24
		Laborate	ory sample ID	PR1010185	5022	PR101018	5023	PR1010185	024
	(lient sampli	ing date / time	06-APR-2010	00:00	06-APR-2010	00:00	06-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	MÜ	Result	MU
Polycyclic Aromatics Hydrocarbo	ns (PAHs) - Continued								
Pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benz(a)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chrysene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(b)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010	_	<0.010		<0.010	-
Benzo(k)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(a)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Indeno(1.2.3.cd)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Benzo(g.h.i)perylene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	-
Dibenz(a.h)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of 16 PAH	S-PAHGMS01	0.160	mg/kg DW	<0.160		<0.160		<0.160	
Sum of carcinogenic PAH	S-PAHGMS01	0.070	mg/kg DW	<0.070		<0.070		<0.070	
Sum of non carcinogenic PAH	S-PAHGMS01	0.090	mg/kg DW	<0.090		<0.090		<0.090	-
PCBs									
PCB 28	S-PCBECD04	0.0030	mg/kg DW	<0.0030	-	<0.0030		<0.0030	
PCB 52	S-PCBECD04	0.0030	mg/kg DW	<0.0030	-	<0.0030		<0.0030	-
PCB 101	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 118	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	-
PCB 138	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 153	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 180	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
Sum of 7 PCBs	S-PCBECD04	0.021	mg/kg DW	<0.021		<0.021		<0.021	
Petroleum Hydrocarbons			N 12 1						
C10 - C12 Fraction	S-TPHFID01	2	mg/kg DW	<2		<2		<2	-
C10 - C40 Fraction	S-TPHFID01	20	mg/kg DW	<20		<20		<20	
C12 - C16 Fraction	S-TPHFID01	3	mg/kg DW	<3	_	<3		<3	
C16 - C35 Fraction	S-TPHFID01	10	mg/kg DW	16	±5	<10		<10	-
C35 - C40 Fraction	S-TPHFID01	5	mg/kg DW	<5		<5		<5	

 Issue Date
 ; 20-APR-2010

 Page
 ; 27 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000	25	1110000	26	1110000	27
		Laborat	ory sample ID	PR101018	5025	PR101018	5026	PR101018	5027
			ing date / time	06-APR-2010		06-APR-2010		06-APR-2010	
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Physical Parameters		2071	O I II	rtount		1,000	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Loss on Ignition @ 550°C	S-LI550GR	0.10	% DW	3.24	±0.18	5.26	±0.27	6.45	±0.33
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	69.0	±3.45	52.7	±2.64	62.9	±3.15
Agregate Parameters	0-5/(1-6/(0)	0.70	100000000000000000000000000000000000000		20.10		22.01		20.70
Phenol Index	S-PHI-PHO	0.20	mg/kg DW	<0.40	1	<2.00		< 0.40	
Nonmetallic Inorganic Parameter				30					
Nitrates	S-NO3-SPC	20	mg/kg DW	<20		<20		<20	
Sulphate as SO4 2-	S-SO4-GR	0.10	% DW	<0.10		<0.10		<0.10	
Nitrate as N	S-NO3-SPC	4.0	mg/kg DW	<4.0		<4.0		<4.0	
Extractable Metals / Major Cation	ns			1000					
Antimony	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		0.98	±0.20
Arsenic	S-METAXHB1	0.50	mg/kg DW	1.99	±0.40	7.23	±1.45	10.9	±2.19
Barium	S-METAXHB1	0.20	mg/kg DW	42.4	±8.48	140	±28.0	156	±31.3
Beryllium	S-METAXHB1	0.010	mg/kg DW	0.528	±0.106	4.81	±0.961	3.83	±0.766
Cadmium	S-METAXHB1	0.40	mg/kg DW	<0.40		1.51	±0.30	<0.40	
Chromium	S-METAXHB1	0.50	mg/kg DW	0.98	±0.20	7.63	±1.53	12.2	±2.44
Cobalt	S-METAXHB1	0.20	mg/kg DW	2.64	±0.53	16.8	±3.36	18.8	±3.77
Copper	S-METAXHB1	1.0	mg/kg DW	1.8	±0.4	16.1	±3.2	21.8	±4.4
Iron	S-METAXHB1	10	mg/kg DW	12700	±2540	54300	±10900	62400	±12500
Lead	S-METAXHB1	1.0	mg/kg DW	4.6	±0.9	7.4	±1.5	12.9	±2.6
Lithium	S-METAXHB1	1.0	mg/kg DW	6.4	±1.3	7.8	±1.6	21.0	±4.2
Manganese	S-METAXHB1	0.50	mg/kg DW	571	±114	1150	±231	1160	±231
Mercury	S-METAXHB1	0.20	mg/kg DW	<0.20		<0.20		<0.20	
Molybdenum	S-METAXHB1	0.40	mg/kg DW	0.59	±0.12	2.07	±0.41	3.87	±0.77
Nickel	S-METAXHB1	1.0	mg/kg DW	1.0	±0.2	17.2	±3.4	11.1	±22
Phosphorus	S-METAXHB1	5.0	mg/kg DW	167	±33.4	1400	±279	251	±50.2
Silver	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		1.10	±0.22
Strontium	S-METAXHB1	0.10	mg/kg DW	18.2	±3.65	36.5	±7.30	21.8	±4.37
Thallium	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		<0.50	-
Tin	S-METAXHB1	1.0	mg/kg DW	<1.0		<1.0		4.9	±1.0
Vanadium	S-METAXHB1	0.10	mg/kg DW	2.31	±0.46	73.3	±14.7	35.7	±7.13
Zinc	S-METAXHB1	3.0	mg/kg DW	65.3	±13.0	230	±45.9	252	±50.4
BTEX			1 2 2 3 1	5000000					
Benzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		< 0.020	
Toluene	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
ortho-Xylene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of TEX	S-VOCGMS01	0.150	mg/kg DW	<0.150		<0.150		<0.150	
Sum of BTEX	S-VOCGMS01	0.170	mg/kg DW	<0.170		<0.170		<0.170	
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Halogenated Volatile Organic Co	mpounds								
Dichlorodifluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Vinyl chloride	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloromethane	S-VOCGMS04	1.0	mg/kg DW	<1.0		<1.0		<1.0	
trans-1.2-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Bromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Dichloromethane	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
1.1-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chloroethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
cis-1.2-Dichloroethene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Trichlorofluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.1-Dichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromochloromethane	S-VOCGMS04	0.20	mg/kg DW	<0.20		<0.20		<0.20	
2.2-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloroform	S-VOCGMS01	0.030	mg/kg DW	<0.030		< 0.030		< 0.030	

ALS Czech Republic, s.r.o. Part of the ALS Laboratory Group

Issue Date : 20-APR-2010 Page Work Order : 28 of 48 : PR1010185 Client : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000	25	1110000	26	1110000	27
		Laborate	ory sample ID	PR101018	5025	PR101018	5026	PR101018	5027
	C	lient sampli	ing date / time	06-APR-2010	00:00	06-APR-2010	00:00	06-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Halogenated Volatile Organic Com	pounds - Continued			100					
1.1-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2-Dichloroethane	S-VOCGMS01	0.100	mg/kg DW	<0.100		<0.100		<0.100	
1.1.1-Trichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dibromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
cis-1.3-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Tetrachloromethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromodichloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
trans-1.3-Dichloropropene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Trichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
1.1.2-Trichloroethane	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.2-Dibromoethane (EDB)	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Dibromochloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Bromobenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Tetrachloroethene	S-VOCGMS01	0.020	mg/kg DW	0.032	±0.013	0.038	±0.015	0.032	±0.013
1.1.1.2-Tetrachloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
2-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chlorobenzene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
4-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Bromoform	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.1.2.2-Tetrachloroethane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
1.2-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.2-Dibromo-3-chloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.4-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	-
1.2.4-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Hexachlorobutadiene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3.5-Trichlorobenzene	S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.050		<0.050	
1.2-Dichloropropane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Sum of 3 Dichlorobenzenes	S-VOCGMS01	0.060	mg/kg DW	<0.060		<0.060		<0.060	
Sum of 4 Trihalomethanes	S-VOCGMS01	0.110	mg/kg DW	<0.110		<0.110		<0.110	
Non-Halogenated Volatile Organic	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.10	mg/kg DW	<0.10	1	<0.10	1	<0.10	
n-Propylbenzene	S-VOCGMS04 S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
		0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.4-Trimethylbenzene p-Isopropyltoluene	S-VOCGMS04 S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3.5-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Styrene	S-VOCGMS04	0.040	mg/kg DW	<0.040		<0.040		<0.040	
sec-Butylbenzene	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
tert-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
n-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Naphthalene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Methyl tert-Butyl Ether (MTBE)	S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.050		<0.050	
tert-Butyl alcohol	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
Sum of BTEXS	S-VOCGMS01	0.210	mg/kg DW	<0.210		<0.210		<0.210	
Polycyclic Aromatics Hydrocarbor									
Naphthalene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		0.050	±0.015
Acenaphthylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Acenaphthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluorene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Phenanthrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
ammene	5 lollioo i								

ALS Czech Republic, s.r.o.

Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 29 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000	25	1110000	26	1110000	27
		Laborate	ory sample ID	PR1010185	5025	PR1010185	5026	PR1010185	5027
	(Client sampli	ng date / time	06-APR-2010	00:00	06-APR-2010	00:00	06-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Polycyclic Aromatics Hydrocarbo	ns (PAHs) - Continued								
Pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benz(a)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chrysene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(b)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Benzo(k)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(a)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Indeno(1.2.3.cd)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(g.h.i)perylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dibenz(a.h)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of 16 PAH	S-PAHGMS01	0.160	mg/kg DW	<0.160	-	<0.160		<0.160	
Sum of carcinogenic PAH	S-PAHGMS01	0.070	mg/kg DW	<0.070		<0.070		<0.070	
Sum of non carcinogenic PAH	S-PAHGMS01	0.090	mg/kg DW	<0.090		<0.090		<0.090	
PCBs									
PCB 28	S-PCBECD04	0.0030	mg/kg DW	<0.0030	-	<0.0030		<0.0030	
PCB 52	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 101	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 118	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 138	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 153	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 180	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
Sum of 7 PCBs	S-PCBECD04	0.021	mg/kg DW	<0.021		<0.021		<0.021	
Petroleum Hydrocarbons									
C10 - C12 Fraction	S-TPHFID01	2	mg/kg DW	<2		<2		<2	
C10 - C40 Fraction	S-TPHFID01	20	mg/kg DW	<20		<20		30	±9
C12 - C16 Fraction	S-TPHFID01	3	mg/kg DW	<3		<3		<3	
C16 - C35 Fraction	S-TPHFID01	10	mg/kg DW	<10		<10		21	±6
C35 - C40 Fraction	S-TPHFID01	5	mg/kg DW	<5		<5		8	±2

ALS Czech Republic, s.r.o. Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 30 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000	028	1110000)29	1110000	30
		Laborate	ory sample ID	PR101018	5028	PR101018	5029	PR101018	5030
		Client sampli	ing date / time	06-APR-201	0 00:00	06-APR-2010	00:00	06-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	ми	Result	ми	Result	MU
Physical Parameters	120 11 11 11 11								
Loss on Ignition @ 550°C	S-LI550GR	0.10	% DW	7.11	±0.36	0.90	±0.08	7.05	±0.36
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	69.7	±3.48	64.6	±3.23	55.4	±2.77
Agregate Parameters	22 10 10 10 10 10								
Phenol Index	S-PHI-PHO	0.20	mg/kg DW	<0.20		<0.20		<0.20	-
Nonmetallic Inorganic Parameters									
Nitrates	S-NO3-SPC	20	mg/kg DW	<20		<20		<20	-
Sulphate as SO4 2-	S-SO4-GR	0.10	% DW	<0.10		<0.10		0.12	±0.01
Nitrate as N	S-NO3-SPC	4.0	mg/kg DW	<4.0		<4.0		<4.0	
Extractable Metals / Major Cations									
Antimony	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		<0.50	
Arsenic	S-METAXHB1	0.50	mg/kg DW	8.13	±1.62	2.59	±0.52	8.52	±1.70
Barium	S-METAXHB1	0.20	mg/kg DW	176	±35.1	7.86	±1.57	147	±29.5
Beryllium	S-METAXHB1	0.010	mg/kg DW	5.34	±1.07	0.316	±0.063	3.79	±0.759
Cadmium	S-METAXHB1	0.40	mg/kg DW	<0.40		<0.40		2.05	±0.41
Chromium	S-METAXHB1	0.50	mg/kg DW	6.26	±1.25	1.38	±0.28	9.08	±1.82
Cobalt	S-METAXHB1	0.20	mg/kg DW	12.0	±2.41	2.65	±0.53	25.7	±5.14
Copper	S-METAXHB1	1.0	mg/kg DW	10.7	±2.1	<1.0		19.8	±4.0
Iron	S-METAXHB1	10	mg/kg DW	54200	±10800	10500	±2090	51700	±10300
Lead	S-METAXHB1	1.0	mg/kg DW	8.7	±1.7	2.0	±0.4	4.1	±0.8
Lithium	S-METAXHB1	1.0	mg/kg DW	25.5	±5.1	2.8	±0.6	8.0	±1.6
Manganese	S-METAXHB1	0.50	mg/kg DW	3130	±625	544	±109	2960	±591
Mercury	S-METAXHB1	0.20	mg/kg DW	<0.20		<0.20		<0.20	
Molybdenum	S-METAXHB1	0.40	mg/kg DW	3.40	±0.68	0.76	±0.15	4.44	±0.89
Nickel	S-METAXHB1	1.0	mg/kg DW	5.8	±1.2	<1.0		18.7	±3.7
Phosphorus	S-METAXHB1	5.0	mg/kg DW	967	±193	210	±42.0	1470	±293
Silver	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		<0.50	
Strontium	S-METAXHB1	0.10	mg/kg DW	114	±22.8	6.36	±1.27	82.3	±16.4
Thallium	S-METAXHB1	0.50	mg/kg DW	0.73	±0.14	<0.50		0.77	±0.15
Tin	S-METAXHB1	1.0	mg/kg DW	1.1	±0.2	<1.0		<1.0	
Vanadium	S-METAXHB1	0.10	mg/kg DW	19.6	±3.92	3.72	±0.74	125	±25.0
Zinc	S-METAXHB1	3.0	mg/kg DW	306	±61.3	40.5	±8.1	310	±61.9
BTEX									
Benzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Toluene	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
ortho-Xylene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of TEX	S-VOCGMS01	0.150	mg/kg DW	<0.150		<0.150		<0.150	
Sum of BTEX	S-VOCGMS01	0.170	mg/kg DW	<0.170		<0.170		<0.170	
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Halogenated Volatile Organic Com		0.10	ma/ka D\M	<0.10		<0.10		<0.10	
Dichlorodifluoromethane	S-VOCGMS04		mg/kg DW	<0.10				<0.10	
Vinyl chloride	S-VOCGMS01 S-VOCGMS04	0.10 1.0	mg/kg DW mg/kg DW	<1.0		<0.10 <1.0		<1.0	
Chloromethane		0.010	mg/kg DW	<0.010		<0.010		<0.010	
trans-1.2-Dichloroethene	S-VOCGMS01	0.10	mg/kg DW	<0.010		<0.010		<0.010	
Bromomethane Dichloromethane	S-VOCGMS04	0.10	mg/kg DW	<0.80		<0.10		<0.10	
	S-VOCGMS01 S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
1.1-Dichloroethene	S-VOCGMS01 S-VOCGMS04	0.10	mg/kg DW	<0.010		<0.010		<0.10	
Chloroethane		0.020	mg/kg DW	<0.020		<0.020		<0.020	
cis-1.2-Dichloroethene	S-VOCGMS01 S-VOCGMS04	0.10	mg/kg DW	<0.020		<0.10		<0.020	
Trichlorofluoromethane	S-VOCGMS04 S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.10		<0.10	
1.1-Dichloroethane		0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromochloromethane 2.2-Dichloropropane	S-VOCGMS04 S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloroform		0.030	mg/kg DW	<0.030		<0.030		<0.030	
CINOIOIOIM	S-VOCGMS01	0.030	IIIg/kg DVV	~0.000		~0.000		~0.000	-

ALS Czech Republic, s.r.o. Part of the ALS Laboratory Group

 Issue Date
 ; 20-APR-2010

 Page
 ; 31 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000	28	1110000	29	1110000	30
			ory sample ID	PR101018		PR101018		PR101018	
	C		ing date / time	06-APR-2010		06-APR-2010		06-APR-2010	
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Halogenated Volatile Organic Com		2011	0,111	, to built		Titouit		Titouit	
1.1-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10	1	<0.10		<0.10	
1.2-Dichloroethane	S-VOCGMS01	0.100	mg/kg DW	<0.100		<0.100		<0.100	
1.1.1-Trichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dibromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
cis-1.3-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Tetrachloromethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromodichloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
trans-1.3-Dichloropropene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Trichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
1.1.2-Trichloroethane	S-VOCGMS01	0.040	mg/kg DW	<0.040	100	<0.040		<0.040	
1.2-Dibromoethane (EDB)	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Dibromochloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Bromobenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Tetrachloroethene	S-VOCGMS01	0.020	mg/kg DW	<0.020		0.026	±0.010	0.039	±0.016
1.1.1.2-Tetrachloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
2-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chlorobenzene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
4-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Bromoform	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.1.2.2-Tetrachloroethane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.2-Dibromo-3-chloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.4-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020	1	<0.020		<0.020	
1.2.4-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg DW	<0.030		< 0.030		< 0.030	
Hexachlorobutadiene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3.5-Trichlorobenzene	S-VOCGMS01	0.050	mg/kg DW	< 0.050		<0.050		< 0.050	
1.2-Dichloropropane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Sum of 3 Dichlorobenzenes	S-VOCGMS01	0.060	mg/kg DW	<0.060		<0.060		<0.060	
Sum of 4 Trihalomethanes	S-VOCGMS01	0.110	mg/kg DW	<0.110		<0.110		<0.110	-
Non-Halogenated Volatile Organic	Compounds								
Isopropylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
n-Propylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.4-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
p-Isopropyltoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3.5-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Styrene	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
sec-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
tert-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
n-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Naphthalene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Methyl tert-Butyl Ether (MTBE)	S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.050		<0.050	
tert-Butyl alcohol	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
Sum of BTEXS	S-VOCGMS01	0.210	mg/kg DW	<0.210		<0.210		<0.210	
Polycyclic Aromatics Hydrocarbor	ns (PAHs)								
Naphthalene	S-PAHGMS01	0.010	mg/kg DW	0.054	±0.016	0.011	±0.003	<0.010	
Acenaphthylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	,
Acenaphthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluorene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Phenanthrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group
Na Harfe 3369 Prague 9 - Vysocany Czech Republic 190 00

 Issue Date
 ; 20-APR-2010

 Page
 ; 32 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Sub-Matrix: SOIL		Clie	ent sample ID	1110000	28	1110000	29	1110000	30
		Laborate	ory sample ID	PR1010185	5028	PR1010185	5029	PR1010185	5030
	(Client sampli	ng date / time	06-APR-2010	00:00	06-APR-2010	00:00	06-APR-2010	00:00
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Polycyclic Aromatics Hydrocarbo	ons (PAHs) - Continued			391111111					
Pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benz(a)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chrysene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(b)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010	_	<0.010		<0.010	
Benzo(k)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(a)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Indeno(1.2.3.cd)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Benzo(g.h.i)perylene	S-PAHGMS01	0.010	mg/kg DW	<0.010	_	<0.010		<0.010	
Dibenz(a.h)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Sum of 16 PAH	S-PAHGMS01	0.160	mg/kg DW	<0.160		<0.160		<0.160	
Sum of carcinogenic PAH	S-PAHGMS01	0.070	mg/kg DW	<0.070	-	<0.070		< 0.070	
Sum of non carcinogenic PAH	S-PAHGMS01	0.090	mg/kg DW	<0.090		<0.090		<0.090	
PCBs									
PCB 28	S-PCBECD04	0.0030	mg/kg DW	<0.0030	-	<0.0030		<0.0030	
PCB 52	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		< 0.0030	
PCB 101	S-PCBECD04	0.0030	mg/kg DW	<0.0030	-	<0.0030		< 0.0030	
PCB 118	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 138	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 153	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		< 0.0030	
PCB 180	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
Sum of 7 PCBs	S-PCBECD04	0.021	mg/kg DW	<0.021		<0.021		<0.021	
Petroleum Hydrocarbons									
C10 - C12 Fraction	S-TPHFID01	2	mg/kg DW	<2		<2		<2	
C10 - C40 Fraction	S-TPHFID01	20	mg/kg DW	<20		<20		<20	
C12 - C16 Fraction	S-TPHFID01	3	mg/kg DW	<3	-	<3		<3	-
C16 - C35 Fraction	S-TPHFID01	10	mg/kg DW	<10		<10		<10	
C35 - C40 Fraction	S-TPHFID01	5	mg/kg DW	<5		<5		<5	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 ; 20-APR-2010

 Page
 ; 33 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000	31	1110000	32	1110000	33
		Laborat	ory sample ID	PR101018	5031	PR101018	5032	PR101018	5033
	(ing date / time	06-APR-2010		07-APR-2010		07-APR-2010	
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
	metrod	LON	Onic	Nesuit	MO	Nesuit	INIO	Nesuit	mo
Physical Parameters Loss on Ignition @ 550°C	S-LI550GR	0.10	% DW	6.88	±0.35	9.73	±0.49	6.35	±0.32
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	59.0	±2.95	50.7	±2.53	56.7	±2.83
Agregate Parameters	0-Bitt-oitoi		7						
Phenol Index	S-PHI-PHO	0.20	mg/kg DW	<0.20		<0.20		<0.20	
Nonmetallic Inorganic Parameter	S								
Nitrates	S-NO3-SPC	20	mg/kg DW	<20		<20		<20	
Sulphate as SO4 2-	S-SO4-GR	0.10	% DW	<0.10		<0.10		<0.10	
Nitrate as N	S-NO3-SPC	4.0	mg/kg DW	<4.0		<4.0		<4.0	
Extractable Metals / Major Cation	S								
Antimony	S-METAXHB1	0.50	mg/kg DW	<0.50		1.28	±0.26	<0.50	-
Arsenic	S-METAXHB1	0.50	mg/kg DW	8.74	±1.75	5.38	±1.08	7.62	±1.52
Barium	S-METAXHB1	0.20	mg/kg DW	58.2	±11.6	236	±47.2	347	±69.3
Beryllium	S-METAXHB1	0.010	mg/kg DW	5.37	±1.07	6.51	±1.30	6.21	±1.24
Cadmium	S-METAXHB1	0.40	mg/kg DW	<0.40		<0.40		<0.40	
Chromium	S-METAXHB1	0.50	mg/kg DW	3.06	±0.61	16.5	±3.31	7.60	±1.52
Cobalt	S-METAXHB1	0.20	mg/kg DW	6.40	±1.28	46.4	±9.29	43.6	±8.72
Copper	S-METAXHB1	1.0	mg/kg DW	4.1	±0.8	12.5	±2.5	8.0	±1.6
Iron	S-METAXHB1	10	mg/kg DW	39500	±7900	102000	±20300	97600	±19500
Lead	S-METAXHB1	1.0	mg/kg DW	6.8	±1.4	3.9	±0.8	4.4	±0.9
Lithium	S-METAXHB1	1.0	mg/kg DW	1.3	±0.3	26.5	±5.3	31.6	±6.3
Manganese	S-METAXHB1	0.50	mg/kg DW	380	±76.0	1290	±258	1250	±249
Mercury	S-METAXHB1	0.20	mg/kg DW	<0.20		<0.20		<0.20	
Molybdenum	S-METAXHB1	0.40	mg/kg DW	2.40	±0.48	1.58	±0.32	1.20	±0.24
Nickel	S-METAXHB1	1.0	mg/kg DW	3.4	±0.7	6.6	±1.3	4.0	±0.8
Phosphorus	S-METAXHB1	5.0	mg/kg DW	285	±57.0	1040	±208	1060	±211
Silver	S-METAXHB1	0.50	mg/kg DW	0.71	±0.14	0.52	±0.10	<0.50	
Strontium	S-METAXHB1	0.10	mg/kg DW	14.8	±2.97	23.3	±4.66	30.0	±6.00
Thallium	S-METAXHB1	0.50	mg/kg DW	<0.50		0.87	±0.17	<0.50	-
Tin	S-METAXHB1	1.0	mg/kg DW	<1.0		<1.0		<1.0	
Vanadium	S-METAXHB1	0.10	mg/kg DW	14.8	±2.97	248	±49.7	226	±45.2
Zinc	S-METAXHB1	3.0	mg/kg DW	151	±30.2	232	±46.4	122	±24.5
BTEX	C VOCCMCO4	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Benzene	S-VOCGMS01	0.020	mg/kg DW	<0.10		<0.020		<0.020	
Toluene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		0.020	±0.008
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		0.024	±0.009
meta- & para-Xylene	S-VOCGMS01 S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.020		<0.010	10.009
ortho-Xylene Sum of TEX	S-VOCGMS01	0.150	mg/kg DW	<0.150		<0.150		<0.150	
Sum of BTEX	S-VOCGMS01	0.170	mg/kg DW	<0.170		<0.170		<0.170	
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Halogenated Volatile Organic Co		0.000	mg ng z m	0.000				0.000	
Dichlorodifluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Vinyl chloride	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloromethane	S-VOCGMS04	1.0	mg/kg DW	<1.0		<1.0		<1.0	
trans-1.2-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Dichloromethane	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
1.1-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chloroethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
cis-1.2-Dichloroethene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Trichlorofluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.1-Dichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
Bromochloromethane	S-VOCGMS04	0.20	mg/kg DW	<0.20		<0.20		<0.20	
2.2-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloroform	S-VOCGMS01	0.030	mg/kg DW	< 0.030		< 0.030		< 0.030	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 34 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Clie	ent sample ID	1110000	31	1110000	32	1110000	33
		Laborate	ory sample ID	PR101018	5031	PR1010185	5032	PR101018	5033
	C	Client sampli	ng date / time	06-APR-2010	00:00	07-APR-2010	08:35	07-APR-2010	09:12
Parameter	Method	LOR	Unit	Result	ми	Result	MU	Result	MU
Halogenated Volatile Organic Com	pounds - Continued		15 11 11	65111111					
1.1-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2-Dichloroethane	S-VOCGMS01	0.100	mg/kg DW	<0.100		<0.100		<0.100	
1.1.1-Trichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010	-	<0.010	
Dibromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10	-	<0.10	-
cis-1.3-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Tetrachloromethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromodichloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
trans-1.3-Dichloropropene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Trichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
1.1.2-Trichloroethane	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.2-Dibromoethane (EDB)	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Dibromochloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Bromobenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Tetrachloroethene	S-VOCGMS01	0.020	mg/kg DW	0.031	±0.012	0.034	±0.013	0.022	±0.009
1.1.1.2-Tetrachloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
2-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chlorobenzene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
4-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Bromoform	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040	-	<0.040	-
1.1.2.2-Tetrachloroethane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.2-Dibromo-3-chloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10	-	<0.10	
1.4-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	-
1.3-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.2.4-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Hexachlorobutadiene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020	-	<0.020	
1.3.5-Trichlorobenzene	S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.050		<0.050	
1.2-Dichloropropane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Sum of 3 Dichlorobenzenes	S-VOCGMS01	0.060	mg/kg DW	<0.060		<0.060		<0.060	
Sum of 4 Trihalomethanes	S-VOCGMS01	0.110	mg/kg DW	<0.110		<0.110	-	<0.110	
Non-Halogenated Volatile Organic	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10	- 1	<0.10	
Isopropylbenzene n-Propylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.4-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
p-Isopropyltoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3.5-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Styrene	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		0.079	±0.032
sec-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
tert-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
n-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Naphthalene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Methyl tert-Butyl Ether (MTBE)	S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.050		<0.050	-
tert-Butyl alcohol	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
Sum of BTEXS	S-VOCGMS01	0.210	mg/kg DW	<0.210		<0.210		<0.210	
Polycyclic Aromatics Hydrocarbon									
Naphthalene	S-PAHGMS01	0.010	mg/kg DW	0.012	±0.004	<0.010		<0.010	
Acenaphthylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Acenaphthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluorene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Phenanthrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		< 0.010		< 0.010	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 35 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000	31	1110000	32	1110000	33
		Laborate	ory sample ID	PR1010185	5031	PR1010185	5032	PR1010185	5033
	(Client sampli	ing date / time	06-APR-2010	00:00	07-APR-2010	08:35	07-APR-2010	09:12
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Polycyclic Aromatics Hydrocarbo	ns (PAHs) - Continued								
Pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benz(a)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chrysene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(b)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010	_	<0.010	_	<0.010	-
Benzo(k)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(a)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Indeno(1.2.3.cd)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010	-	<0.010	
Benzo(g.h.i)perylene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Dibenz(a.h)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of 16 PAH	S-PAHGMS01	0.160	mg/kg DW	<0.160		<0.160		<0.160	-
Sum of carcinogenic PAH	S-PAHGMS01	0.070	mg/kg DW	<0.070	-	<0.070		<0.070	
Sum of non carcinogenic PAH	S-PAHGMS01	0.090	mg/kg DW	<0.090		<0.090		<0.090	
PCBs									
PCB 28	S-PCBECD04	0.0030	mg/kg DW	<0.0030	-	<0.0030		<0.0030	
PCB 52	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 101	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 118	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 138	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 153	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 180	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
Sum of 7 PCBs	S-PCBECD04	0.021	mg/kg DW	<0.021		<0.021	-	<0.021	
Petroleum Hydrocarbons	DESCRIPTION OF THE SAME								
C10 - C12 Fraction	S-TPHFID01	2	mg/kg DW	<2		<2		<2	
C10 - C40 Fraction	S-TPHFID01	20	mg/kg DW	<20		<20	-	<20	
C12 - C16 Fraction	S-TPHFID01	3	mg/kg DW	<3		<3		<3	
C16 - C35 Fraction	S-TPHFID01	10	mg/kg DW	<10		<10		<10	
C35 - C40 Fraction	S-TPHFID01	5	mg/kg DW	<5		<5		<5	

ALS Czech Republic, s.r.o. Part of the ALS Laboratory Group

Issue Date : 20-APR-2010 : 36 of 48 : PR1010185 : AmbiPar Control, LDa. Page Work Order Client

Sub-Matrix: SOIL		Cli	ent sample ID	1110000	34	1110000 (1/2 1110000 1110000	35+1/2	1110000	36
		Laborat	ory sample ID	PR101018		PR101018	5035	PR101018	
		Client sampl	ing date / time	07-APR-2010	0 09:32	07-APR-2010	0 09:59	07-APR-2010	0 10:26
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Physical Parameters									
Loss on Ignition @ 550°C	S-LI550GR	0.10	% DW	7.64	±0.39	7.91	±0.40	7.23	±0.37
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	67.6	±3.38	60.4	±3.02	52.9	±2.64
Agregate Parameters									
Phenol Index	S-PHI-PHO	0.20	mg/kg DW	3.41	±1.19	0.42	±0.16	<0.20	
Nonmetallic Inorganic Parameter		20	mariles DIM	1 400		-20		-20	
Nitrates	S-NO3-SPC	0.10	mg/kg DW % DW	<20 <0.10	_	<20 0.10		<20 <0.10	
Sulphate as SO4 2- Nitrate as N	S-SO4-GR S-NO3-SPC	4.0	mg/kg DW	<4.0		<4.0	±0.01	<4.0	
		4.0	IIIg/kg DVV	\4.0		\4.0		~4.0	
Extractable Metals / Major Cation Antimony	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		<0.50	
Arsenic	S-METAXHB1	0.50	mg/kg DW	4.36	±0.87	10.8	±2.16	9.62	±1.92
Barium	S-METAXHB1	0.20	mg/kg DW	318	±63.7	245	±49.0	76.1	±15.2
Beryllium	S-METAXHB1	0.010	mg/kg DW	3.79	±0.758	5.83	±1.16	4.18	±0.837
Cadmium	S-METAXHB1	0.40	mg/kg DW	<0.40		<0.40		<0.40	
Chromium	S-METAXHB1	0.50	mg/kg DW	1.29	±0.26	12.8	±2.56	5.04	±1.01
Cobalt	S-METAXHB1	0.20	mg/kg DW	39.0	±7.79	12.3	±2.46	12.7	±2.54
Copper	S-METAXHB1	1.0	mg/kg DW	17.0	±3.4	4.9	±1.0	7.0	±1.4
Iron	S-METAXHB1	10	mg/kg DW	79800	±16000	64800	±13000	41800	±8360
Lead	S-METAXHB1	1.0	mg/kg DW	3.3	±0.6	11.9	±2.4	7.6	±1.5
Lithium	S-METAXHB1	1.0	mg/kg DW	26.5	±5.3	11.8	±2.4	23.3	±4.6
Manganese	S-METAXHB1	0.50	mg/kg DW	1150	±231	2290	±458	1640	±328
Mercury	S-METAXHB1	0.20	mg/kg DW	<0.20		<0.20		<0.20	
Molybdenum	S-METAXHB1	0.40	mg/kg DW	<0.40	-	4.81	±0.96	3.92	±0.78
Nickel	S-METAXHB1	1.0	mg/kg DW	8.3	±1.6	6.7	±1.3	5.6	±1.1
Phosphorus	S-METAXHB1	5.0	mg/kg DW	871	±174	226	±45.1	416	±83.2
Silver	S-METAXHB1	0.50	mg/kg DW	<0.50		1.70	±0.34	<0.50	-
Strontium	S-METAXHB1	0.10	mg/kg DW	56.6	±11.3	66.5	±13.3	30.7	±6.14
Thallium	S-METAXHB1	0.50 1.0	mg/kg DW	<0.50		<0.50		<0.50 <1.0	
Tin	S-METAXHB1	0.10	mg/kg DW	<1.0 76.2		6.6 83.6	±1.3	80.5	
Vanadium	S-METAXHB1	3.0	mg/kg DW mg/kg DW	106	±15.2	170	±16.7	117	±16.1
Zinc BTEX	S-METAXHB1	5.0	liig/kg DVV	100	±21.2	170	234.1	117	±23.4
Benzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	-
Toluene	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
ortho-Xylene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of TEX	S-VOCGMS01	0.150	mg/kg DW	<0.150	-	<0.150		<0.150	
Sum of BTEX	S-VOCGMS01	0.170	mg/kg DW	<0.170	-	<0.170		<0.170	
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Halogenated Volatile Organic Co	mpounds	TELES.							
Dichlorodifluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Vinyl chloride	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloromethane	S-VOCGMS04	1.0	mg/kg DW	<1.0	-	<1.0		<1.0	
trans-1.2-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010	_	<0.010		<0.010	
Bromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Dichloromethane	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
1.1-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Chloroethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
cis-1.2-Dichloroethene	S-VOCGMS01	0.020	mg/kg DW	<0.020	-	<0.020		<0.020	-
Trichlorofluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.1-Dichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Bromochloromethane	S-VOCGMS04	0.20	mg/kg DW	<0.20		<0.20		<0.20	

ALS Czech Republic, s.r.o.

Part of the ALS Laboratory Group

Na Harle 3369 Prague 9 - Vysocany Czech Republic 190 00

Tel. +420 284 081 645 Fax. +420 284 081 635 www.alsenviro.com

A Campbell Brothers Limited Company

 Issue Date
 : 20-APR-2010

 Page
 : 37 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Clie	ent sample ID	1110000	34	111000035 (1/2 111000035+1/2 111000043)		1110000	36
		Laborate	ory sample ID	PR101018	5034	PR101018	,	PR101018	5036
	(lient sampli	ng date / time	07-APR-2010	0 09:32	07-APR-2010	09:59	07-APR-2010	10:26
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Halogenated Volatile Organic Comp	ounds - Continued			0.000					
2.2-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloroform	S-VOCGMS01	0.030	mg/kg DW	<0.030	-	<0.030		<0.030	
1.1-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10	_	<0.10		<0.10	-
1.2-Dichloroethane	S-VOCGMS01	0.100	mg/kg DW	<0.100		<0.100		<0.100	
1.1.1-Trichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dibromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
cis-1.3-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
Tetrachloromethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromodichloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
trans-1.3-Dichloropropene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
Trichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
1.1.2-Trichloroethane	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.2-Dibromoethane (EDB)	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
1.2.3-Trichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Dibromochloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Bromobenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Tetrachloroethene	S-VOCGMS01	0.020	mg/kg DW	0.030	±0.012	0.029	±0.012	0.025	±0.010
1.1.1.2-Tetrachloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
2-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
Chlorobenzene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
4-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Bromoform	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.1.2.2-Tetrachloroethane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020	-	<0.020		<0.020	
1.2-Dibromo-3-chloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
1.4-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020	1000	<0.020		<0.020	-
1.2.4-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	-
Hexachlorobutadiene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3.5-Trichlorobenzene	S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.050		<0.050	-
1.2-Dichloropropane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Sum of 3 Dichlorobenzenes	S-VOCGMS01	0.060	mg/kg DW	<0.060		<0.060		<0.060	
Sum of 4 Trihalomethanes	S-VOCGMS01	0.110	mg/kg DW	<0.110		<0.110		<0.110	-
Non-Halogenated Volatile Organic C		0.40	ma/ka DIA/	ZO 40		ZO 10		<0.10	
Isopropylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
n-Propylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10 <0.10		<0.10 <0.10		<0.10 <0.10	
1.2.4-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
p-Isopropyltoluene	S-VOCGMS04	0.10	mg/kg DW mg/kg DW	<0.10		<0.10		<0.10	
1.3.5-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Styrene sec-Butylbenzene	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
tert-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
n-Butylbenzene Naphthalana	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Naphthalene Methyl tert-Butyl Ether (MTBE)	S-VOCGMS04 S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.10		<0.050	
tert-Butyl alcohol	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
Sum of BTEXS		0.210	mg/kg DW	<0.210		<0.210		<0.210	
	S-VOCGMS01	0.210	mg/ng DVV	-0.210		-0.210		-0.210	
Polycyclic Aromatics Hydrocarbons Naphthalene	S-PAHGMS01	0.010	mg/kg DW	0.010	±0.003	<0.010		<0.010	
Acenaphthylene	S-PAHGMS01	0.010	mg/kg DW	<0.010	20.003	<0.010		<0.010	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 ; 20-APR-2010

 Page
 ; 38 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

	C. Method		ory sample ID	PR1010185			3)		
				PK 1010103	034	PR1010185	035	PR1010185	5036
	Method		ng date / time	07-APR-2010	09:32	07-APR-2010	09:59	07-APR-2010	10:26
Parameter		LOR	Unit	Result	MU	Result	MU	Result	MU
Polycyclic Aromatics Hydrocarbons (PA	Hs) - Continued								
	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		< 0.010	
Phenanthrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010	_	<0.010	-	<0.010	-
Fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	_
Pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
•	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Chrysene	S-PAHGMS01	0.010	mg/kg DW	<0.010	_	<0.010		<0.010	-
Benzo(b)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		< 0.010	
Benzo(k)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(a)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
	S-PAHGMS01	0.010	mg/kg DW	<0.010	_	<0.010		<0.010	-
Benzo(g.h.i)perylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dibenz(a.h)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of 16 PAH	S-PAHGMS01	0.160	mg/kg DW	<0.160	_	<0.160		<0.160	
Sum of carcinogenic PAH	S-PAHGMS01	0.070	mg/kg DW	<0.070		<0.070		< 0.070	
Sum of non carcinogenic PAH	S-PAHGMS01	0.090	mg/kg DW	<0.090		<0.090		<0.090	
PCBs			1 1 1 1	30000					
	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		< 0.0030	
PCB 52	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		< 0.0030	
PCB 101	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 118	S-PCBECD04	0.0030	mg/kg DW	<0.0030	_	<0.0030		<0.0030	
PCB 138	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		< 0.0030	
PCB 153	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 180	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
Sum of 7 PCBs	S-PCBECD04	0.021	mg/kg DW	<0.021	-	<0.021		<0.021	_
Petroleum Hydrocarbons						103.11			
C10 - C12 Fraction	S-TPHFID01	2	mg/kg DW	<2		<2		<2	-
C10 - C40 Fraction	S-TPHFID01	20	mg/kg DW	<20		26	±8	<20	_
C12 - C16 Fraction	S-TPHFID01	3	mg/kg DW	<3		<3		4	±1
C16 - C35 Fraction	S-TPHFID01	10	mg/kg DW	<10		22	±6	<10	
C35 - C40 Fraction	S-TPHFID01	5	mg/kg DW	<5	-	<5		<5	

ALS Czech Republic, s.r.o. Part of the ALS Laboratory Group

 Issue Date
 ; 20-APR-2010

 Page
 ; 39 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000	37	1110000	38	1110000	39
odb Madix. Ooil			ory sample ID	PR101018		PR101018		PR101018	
	,		ing date / time	07-APR-2010		07-APR-2010		07-APR-2010	
	Method	LOR	Unit		MU	Result	MU		MU
Parameter	Wethod	LOR	Unit	Result	MIC	Result	MO	Result	IVIO
Physical Parameters Loss on Ignition @ 550°C	S-LI550GR	0.10	% DW	10.6	±0.53	9.43	±0.48	8.46	±0.43
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	49.4	±2.47	52.7	±2.64	57.4	±2.87
Agregate Parameters	3-DK1-GKC1	0.10	,,	70.7	22,47	02.7	22.04	01.4	12.01
Phenol Index	S-PHI-PHO	0.20	mg/kg DW	7.26	±2.54	0.99	±0.35	0.45	±0.16
Nonmetallic Inorganic Parameter				30					
Nitrates	S-NO3-SPC	20	mg/kg DW	<20		<20		<20	
Sulphate as SO4 2-	S-SO4-GR	0.10	% DW	<0.10		0.10	±0.01	0.11	±0.01
Nitrate as N	S-NO3-SPC	4.0	mg/kg DW	<4.0		<4.0		<4.0	
Extractable Metals / Major Cation	ns			1000					
Antimony	S-METAXHB1	0.50	mg/kg DW	<0.50		0.57	±0.11	<0.50	
Arsenic	S-METAXHB1	0.50	mg/kg DW	9.22	±1.84	6.55	±1.31	8.96	±1.79
Barium	S-METAXHB1	0.20	mg/kg DW	232	±46.4	259	±51.9	68.4	±13.7
Beryllium	S-METAXHB1	0.010	mg/kg DW	4.77	±0.953	2.90	±0.579	4.67	±0.935
Cadmium	S-METAXHB1	0.40	mg/kg DW	<0.40		<0.40		<0.40	
Chromium	S-METAXHB1	0.50	mg/kg DW	4.76	±0.95	14.6	±2.92	20.9	±4.18
Cobalt	S-METAXHB1	0.20	mg/kg DW	19.5	±3.90	14.5	±2.90	18.4	±3.67
Copper	S-METAXHB1	1.0	mg/kg DW	5.0	±1.0	17.7	±3.5	9.3	±1.8
Iron	S-METAXHB1	10	mg/kg DW	55000	±11000	49600	±9920	58400	±11700
Lead	S-METAXHB1	1.0	mg/kg DW	6.0	±1.2	7.4	±1.5	8.2	±1.6
Lithium	S-METAXHB1	1.0	mg/kg DW	21.5	±4.3	10.4	±2.1	22.7	±4.5
Manganese	S-METAXHB1	0.50	mg/kg DW	1500	±300	1700	±340	1860	±372
Mercury	S-METAXHB1	0.20	mg/kg DW	<0.20		<0.20		<0.20	
Molybdenum	S-METAXHB1	0.40	mg/kg DW	1.39	±0.28	3.15	±0.63	4.27	±0.85
Nickel	S-METAXHB1	1.0	mg/kg DW	4.6	±0.9	15.2	±3.0	14.7	±2.9
Phosphorus	S-METAXHB1	5.0	mg/kg DW	585	±117	1290	±258	446	±89.2
Silver	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		0.52	±0.10
Strontium	S-METAXHB1	0.10	mg/kg DW	29.8	±5.95	46.5	±9.30	100	±20.1
Thallium	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		<0.50	-
Tin	S-METAXHB1	1.0	mg/kg DW	<1.0		4.6	±0.9	6.2	±1.2
Vanadium	S-METAXHB1	0.10	mg/kg DW	97.2	±19.4	89.2	±17.8	68.7	±13.7
Zinc	S-METAXHB1	3.0	mg/kg DW	132	±26.5	193	±38.6	153	±30.6
BTEX									
Benzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Toluene	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	-
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
ortho-Xylene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of TEX	S-VOCGMS01	0.150	mg/kg DW	<0.150		<0.150		<0.150	
Sum of BTEX	S-VOCGMS01	0.170	mg/kg DW	<0.170		<0.170		<0.170	
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Halogenated Volatile Organic Co		0.10				.0.10			
Dichlorodifluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Vinyl chloride	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloromethane	S-VOCGMS04	1.0	mg/kg DW	<1.0		<1.0		<1.0	,
trans-1.2-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Dichloromethane	S-VOCGMS01	0.80	mg/kg DW	<0.80	-	<0.80		<0.80	
1.1-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	,
Chloroethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
cis-1.2-Dichloroethene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Trichlorofluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.1-Dichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromochloromethane	S-VOCGMS04	0.20	mg/kg DW	<0.20		<0.20		<0.20	
2.2-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloroform	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 ; 20-APR-2010

 Page
 ; 40 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Sub-Matrix: SOIL		Clie	ent sample ID	1110000	37	1110000	38	1110000	39
		Laborate	ory sample ID	PR101018	5037	PR101018	5038	PR101018	5039
	0		ing date / time	07-APR-2010	10:39	07-APR-2010	11:02	07-APR-2010	11:29
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Halogenated Volatile Organic Comp	oounds - Continued			001011					
1.1-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2-Dichloroethane	S-VOCGMS01	0.100	mg/kg DW	<0.100		<0.100		<0.100	
1.1.1-Trichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dibromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
cis-1.3-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Tetrachloromethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromodichloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
trans-1.3-Dichloropropene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Trichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
1.1.2-Trichloroethane	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.2-Dibromoethane (EDB)	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Dibromochloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Bromobenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Tetrachloroethene	S-VOCGMS01	0.020	mg/kg DW	0.034	±0.014	0.026	±0.010	0.039	±0.016
1.1.1.2-Tetrachloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
2-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chlorobenzene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
4-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Bromoform	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.1.2.2-Tetrachloroethane	S-VOCGMS01	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	-
1.2-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.2-Dibromo-3-chloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.4-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.2.4-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Hexachlorobutadiene	S-VOCGMS04	0.10	mg/kg DW	<0.10 <0.020		<0.10 <0.020		<0.10 <0.020	
1.2.3-Trichlorobenzene	S-VOCGMS01	0.020	mg/kg DW mg/kg DW	<0.020		<0.020		<0.050	
1.3.5-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg DW	<0.00		<0.00		<0.00	
1.2-Dichloropropane Sum of 3 Dichlorobenzenes	S-VOCGMS01 S-VOCGMS01	0.060	mg/kg DW	<0.060		<0.060		<0.060	
Sum of 4 Trihalomethanes	S-VOCGMS01	0.110	mg/kg DW	<0.110		<0.110		<0.110	
Non-Halogenated Volatile Organic (0.110	IIIg/kg DVV	40.110		40.110		40.110	
Isopropylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10	1	<0.10		<0.10	
n-Propylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.4-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
p-Isopropyltoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3.5-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Styrene	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	-
sec-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
tert-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
n-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Naphthalene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Methyl tert-Butyl Ether (MTBE)	S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.050		<0.050	
tert-Butyl alcohol	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
Sum of BTEXS	S-VOCGMS01	0.210	mg/kg DW	<0.210		<0.210		<0.210	
Polycyclic Aromatics Hydrocarbons	s (PAHs)			2 1 1 1 1					
Naphthalene	S-PAHGMS01	0.010	mg/kg DW	<0.010		0.019	±0.006	0.071	±0.021
Acenaphthylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
Acenaphthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluorene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Phenanthrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-

ALS Czech Republic, s.r.o. Part of the ALS Laboratory Group

 Issue Date
 ; 20-APR-2010

 Page
 ; 41 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000	37	1110000	38	1110000	39
		Laborate	ory sample ID	PR1010185	5037	PR1010185	5038	PR101018	5039
	(Client sampli	ing date / time	07-APR-2010	10:39	07-APR-2010	11:02	07-APR-2010	11:29
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Polycyclic Aromatics Hydrocarbo	ns (PAHs) - Continued								
Pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benz(a)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chrysene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(b)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Benzo(k)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(a)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Indeno(1.2.3.cd)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(g.h.i)perylene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Dibenz(a.h)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Sum of 16 PAH	S-PAHGMS01	0.160	mg/kg DW	<0.160		<0.160		<0.160	
Sum of carcinogenic PAH	S-PAHGMS01	0.070	mg/kg DW	<0.070		<0.070		<0.070	
Sum of non carcinogenic PAH	S-PAHGMS01	0.090	mg/kg DW	<0.090		<0.090		<0.090	
PCBs									
PCB 28	S-PCBECD04	0.0030	mg/kg DW	<0.0030	-	<0.0030		<0.0030	
PCB 52	S-PCBECD04	0.0030	mg/kg DW	<0.0030	-	<0.0030		<0.0030	
PCB 101	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 118	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 138	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 153	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 180	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
Sum of 7 PCBs	S-PCBECD04	0.021	mg/kg DW	<0.021		<0.021		<0.021	
Petroleum Hydrocarbons									
C10 - C12 Fraction	S-TPHFID01	2	mg/kg DW	<2		<2		<2	
C10 - C40 Fraction	S-TPHFID01	20	mg/kg DW	<20		<20		<20	
C12 - C16 Fraction	S-TPHFID01	3	mg/kg DW	<3	-	<3		<3	
C16 - C35 Fraction	S-TPHFID01	10	mg/kg DW	<10		<10		<10	
C35 - C40 Fraction	S-TPHFID01	5	mg/kg DW	<5		<5		<5	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

Issue Date : 20-APR-2010 : 42 of 48 : PR1010185 : AmbiPar Control, LDa. Page Work Order Client

Sub-Matrix: SOIL			ent sample ID	1110000 PR101018				1110000 Duplicate 111000013 1110000 PR101018	(2/2 +2/2 42)
			ing date / time	07-APR-2010	0 12:00	07-APR-2010		07-APR-2010	
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
		2011	07111	7100411		7100011		rtoount	
Physical Parameters Loss on Ignition @ 550°C	S-LI550GR	0.10	% DW	5.21	±0.27	4.99	±0.26	5.21	±0.27
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	77.7	±3.89	71.8	±3.59	61.9	±3.10
Agregate Parameters	O-DITT-GITCI	0.10			20.00	11.0	20.00	01.0	20.10
Phenol Index	S-PHI-PHO	0.20	mg/kg DW	0.39	±0.14	0.48	±0.18	1.39	±0.49
Nonmetallic Inorganic Parameters	041114110	0.20	gg.z.r	4.00	20.11	0.40	20.10	7.00	20.10
Nitrates	S-NO3-SPC	20	mg/kg DW	<20	1	<20		<20	
Sulphate as SO4 2-	S-SO4-GR	0.10	% DW	<0.10		<0.10		0.12	±0.01
Nitrate as N	S-NO3-SPC	4.0	mg/kg DW	<4.0		<4.0		<4.0	20.01
	3-1103-31-0	4.0	mg/ng DVV	34.0		34.0			
Extractable Metals / Major Cations Antimony	S-METAXHB1	0.50	mg/kg DW	2.22	±0.44	<0.50		<0.50	
Arsenic	S-METAXHB1	0.50	mg/kg DW	4.45	±0.89	7.38	±1.48	8.46	±1.69
Barium	S-METAXHB1	0.20	mg/kg DW	80.1	±16.0	145	±29.0	238	±47.6
Beryllium	S-METAXHB1	0.010	mg/kg DW	3.43	±0.686	5.13	±1.02	4.76	±0.953
Cadmium	S-METAXHB1	0.40	mg/kg DW	<0.40	20.000	<0.40	±1.02	<0.40	20.503
Chromium	S-METAXHB1	0.50	mg/kg DW	81.3	±16.2	10.7	±2.14	14.0	±2.80
		0.20	mg/kg DW	39.9	±7.98	20.6	±4.11	10.9	±2.18
Cobalt	S-METAXHB1	1.0		45.2	±9.0	9.5		12.2	±2.10
Copper	S-METAXHB1	1.0	mg/kg DW mg/kg DW	75600		52000	±1.9	50000	
Iron	S-METAXHB1	1.0			±15100		±10400		±10000
Lead	S-METAXHB1		mg/kg DW	4.6	±0.9	7.3	±1.4	7.7	±1.5
Lithium	S-METAXHB1	1.0	mg/kg DW	16.1	±3.2	18.0	±3.6	11.4	±2.3
Manganese	S-METAXHB1	0.50	mg/kg DW	1620	±323	2030	±406	1520	±303
Mercury	S-METAXHB1	0.20	mg/kg DW	<0.20		<0.20		<0.20	
Molybdenum	S-METAXHB1	0.40	mg/kg DW	2.13	±0.43	3.16	±0.63	3.52	±0.70
Nickel	S-METAXHB1	1.0	mg/kg DW	99.0	±19.8	13.0	±2.6	7.3	±1.4
Phosphorus	S-METAXHB1	5.0	mg/kg DW	415	±83.0	304	±60.8	490	±97.9
Silver	S-METAXHB1	0.50	mg/kg DW	0.63	±0.13	<0.50		<0.50	
Strontium	S-METAXHB1	0.10	mg/kg DW	50.1	±10.0	23.8	±4.76	22.2	±4.43
Thallium	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		<0.50	
Tin	S-METAXHB1	1.0	mg/kg DW	2.4	±0.5	2.4	±0.5	5.0	±1.0
Vanadium	S-METAXHB1	0.10	mg/kg DW	125	±24.9	43.2	±8.65	89.0	±17.8
Zinc	S-METAXHB1	3.0	mg/kg DW	180	±36.1	164	±32.7	171	±34.3
BTEX									
Benzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Toluene	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
ortho-Xylene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
Sum of TEX	S-VOCGMS01	0.150	mg/kg DW	<0.150		<0.150		<0.150	
Sum of BTEX	S-VOCGMS01	0.170	mg/kg DW	<0.170		<0.170		<0.170	
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		< 0.030	
Halogenated Volatile Organic Com	pounds								
Dichlorodifluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Vinyl chloride	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Chloromethane	S-VOCGMS04	1.0	mg/kg DW	<1.0	-	<1.0		<1.0	-
trans-1.2-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Dichloromethane	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
1.1-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010	_	<0.010		<0.010	-
Chloroethane	S-VOCGMS04	0.10	mg/kg DW	<0.10	-	<0.10		<0.10	
cis-1.2-Dichloroethene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Trichlorofluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.1-Dichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010	_	<0.010		<0.010	

ALS Czech Republic, s.r.o.

Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 43 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL	,	Laborate	ent sample ID ory sample ID ing date / time	PR101018:	5040	1110000 Duplicate 11100006 1110000 PR1010183	(2/2 +2/2 41) 5041	1110000 Duplicate 111000013 11100004 PR101018:	(2/2 +2/2 42) 5042
				07-APR-2010		07-APR-2010		07-APR-2010	
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Halogenated Volatile Organic Comp	pounds - Continued								
Bromochloromethane	S-VOCGMS04	0.20	mg/kg DW	<0.20		<0.20		<0.20	
2.2-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloroform	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
1.1-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2-Dichloroethane	S-VOCGMS01	0.100	mg/kg DW	<0.100		<0.100		<0.100	
1.1.1-Trichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dibromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
cis-1.3-Dichloropropylene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Tetrachloromethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromodichloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	-
trans-1.3-Dichloropropene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3-Dichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Trichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
1.1.2-Trichloroethane	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.2-Dibromoethane (EDB)	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Dibromochloromethane	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Bromobenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Tetrachloroethene	S-VOCGMS01	0.020	mg/kg DW	0.026	±0.010	<0.020		0.030	±0.012
1.1.1.2-Tetrachloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
2-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Chlorobenzene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
4-Chlorotoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Bromoform	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
1.1.2.2-Tetrachloroethane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
1.2-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.2-Dibromo-3-chloropropane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.4-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.3-Dichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	-
1.2.4-Trichlorobenzene	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Hexachlorobutadiene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.2.3-Trichlorobenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	-
1.3.5-Trichlorobenzene	S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.050		<0.050	
1.2-Dichloropropane	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Sum of 3 Dichlorobenzenes	S-VOCGMS01	0.060	mg/kg DW	<0.060		<0.060	-	<0.060	
Sum of 4 Trihalomethanes	S-VOCGMS01	0.110	mg/kg DW	<0.110		<0.110		<0.110	-
Non-Halogenated Volatile Organic	Compounds								
Isopropylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10	-	<0.10	
n-Propylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10	-	<0.10	_
1.2.4-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
p-Isopropyltoluene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.3.5-Trimethylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Styrene	S-VOCGMS01	0.040	mg/kg DW	<0.040		<0.040		<0.040	-
sec-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
tert-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
n-Butylbenzene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Naphthalene	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	-
Methyl tert-Butyl Ether (MTBE)	S-VOCGMS01	0.050	mg/kg DW	<0.050		<0.050		<0.050	
tert-Butyl alcohol	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
Sum of BTEXS	S-VOCGMS01	0.210	mg/kg DW	<0.210		<0.210		<0.210	_
Polycyclic Aromatics Hydrocarbons	s (PAHs)		1 1 1 1 1 1						
Naphthalene	S-PAHGMS01	0.010	mg/kg DW	0.029	±0.009	<0.010		<0.010	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 44 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

		05		4440000	40				
Sub-Matrix: SOIL		Clie	ent sample ID	1110000	40	1110000		1110000	
						Duplicate		Duplicate	
						111000006		111000013	
						11100004	,	11100004	,
			ory sample ID	PR1010185		PR1010185		PR101018	
		lient sampli	ing date / time	07-APR-2010	12:00	07-APR-2010	14:52	07-APR-2010	18:14
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Polycyclic Aromatics Hydrocarbo	ns (PAHs) - Continued								
Acenaphthylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Acenaphthene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Fluorene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Phenanthrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benz(a)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chrysene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(b)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(k)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(a)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Indeno(1.2.3.cd)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(g.h.i)perylene	S-PAHGMS01	0.010	mg/kg DW	<0.010	_	<0.010		<0.010	
Dibenz(a.h)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010	-	<0.010		<0.010	
Sum of 16 PAH	S-PAHGMS01	0.160	mg/kg DW	<0.160		<0.160		<0.160	
Sum of carcinogenic PAH	S-PAHGMS01	0.070	mg/kg DW	<0.070	-	<0.070		<0.070	
Sum of non carcinogenic PAH	S-PAHGMS01	0.090	mg/kg DW	<0.090		<0.090		<0.090	
PCBs									
PCB 28	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 52	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 101	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 118	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 138	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 153	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 180	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
Sum of 7 PCBs	S-PCBECD04	0.021	mg/kg DW	<0.021		<0.021		<0.021	
Petroleum Hydrocarbons									
C10 - C12 Fraction	S-TPHFID01	2	mg/kg DW	<2		<2		<2	
C10 - C40 Fraction	S-TPHFID01	20	mg/kg DW	<20		26	±8	77	±23
C12 - C16 Fraction	S-TPHFID01	3	mg/kg DW	<3	_	<3		4	±1
C16 - C35 Fraction	S-TPHFID01	10	mg/kg DW	<10		23	±7	72	±22
C35 - C40 Fraction	S-TPHFID01	5	mg/kg DW	<5		<5		<5	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 ; 20-APR-2010

 Page
 ; 45 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Sub-Matrix: SOIL		Cli	ent sample ID	1110000 Duplicate 111000035 1110000	(2/2 +2/2	1110000 Regional s	ample	1110000 Regional s	
			ory sample ID	PR101018		PR101018		PR101018	
			ing date / time	07-APR-2010		07-APR-2010		07-APR-2010	
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Physical Parameters		0.40	O/ DIA/						
Loss on Ignition @ 550°C	S-LI550GR	0.10	% DW	9.34	±0.47	16.1	±0.81	15.6	±0.78
Dry matter @ 105°C	S-DRY-GRCI	0.10	76	61.2	±3.06	66.2	±3.31	52.8	±2.64
Agregate Parameters Phenol Index	S-PHI-PHO	0.20	mg/kg DW	1.17	±0.41	0.37	±0.14	0.83	±0.30
Nonmetallic Inorganic Paramete		0.20	IIIg/kg DVV	1.17	20.41	0.57	20.14	0.00	30.30
Nonmetanic morganic Paramete	S-NO3-SPC	20	mg/kg DW	<20		<20		<20	
Sulphate as SO4 2-	S-S04-GR	0.10	% DW	0.14	±0.01	0.17	±0.02	0.11	±0.01
Nitrate as N	S-NO3-SPC	4.0	mg/kg DW	<4.0		<4.0		<4.0	
Extractable Metals / Major Catio									
Antimony	S-METAXHB1	0.50	mg/kg DW	0.55	±0.11	<0.50		1.26	±0.25
Arsenic	S-METAXHB1	0.50	mg/kg DW	6.40	±1.28	5.79	±1.16	11.5	±2.30
Barium	S-METAXHB1	0.20	mg/kg DW	135	±27.0	489	±97.8	264	±52.9
Beryllium	S-METAXHB1	0.010	mg/kg DW	2.93	±0.585	5.19	±1.04	6.48	±1.30
Cadmium	S-METAXHB1	0.40	mg/kg DW	<0.40		<0.40		<0.40	
Chromium	S-METAXHB1	0.50	mg/kg DW	6.75	±1.35	4.17	±0.83	12.4	±2.49
Cobalt	S-METAXHB1	0.20	mg/kg DW	23.9	±4.79	20.9	±4.18	12.1	±2.42
Copper	S-METAXHB1	1.0	mg/kg DW	9.6	±1.9	22.4	±4.5	5.3	±1.0
Iron	S-METAXHB1	10	mg/kg DW	59400	±11900	51600	±10300	69900	±14000
Lead	S-METAXHB1	1.0	mg/kg DW	23.3	±4.6	6.7	±1.3	13.3	±2.6
Lithium	S-METAXHB1	1.0	mg/kg DW	12.9	±2.6	12.5	±2.5	13.0	±2.6
Manganese	S-METAXHB1	0.50	mg/kg DW	1410	±281	1690	±339	2530	±506
Mercury	S-METAXHB1	0.20	mg/kg DW	<0.20		<0.20		<0.20	
Molybdenum	S-METAXHB1	0.40	mg/kg DW	1.30	±0.26	1.12	±0.22	5.07	±1.01
Nickel	S-METAXHB1	1.0	mg/kg DW	6.6	±1.3	8.0	±1.6	6.2	±1.2
Phosphorus	S-METAXHB1	5.0	mg/kg DW	1460	±293	913	±183	195	±39.0
Silver	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		1.49	±0.30
Strontium	S-METAXHB1	0.10	mg/kg DW	70.6	±14.1	110	±21.9	71.2	±14.2
Thallium	S-METAXHB1	0.50	mg/kg DW	<0.50		<0.50		<0.50	
Tin	S-METAXHB1	1.0	mg/kg DW	<1.0		<1.0		11.8	±2.4
Vanadium	S-METAXHB1	0.10	mg/kg DW	103	±20.7	115	±23.0	85.1	±17.0
Zinc	S-METAXHB1	3.0	mg/kg DW	130	±26.0	105	±21.0	173	±34.6
BTEX									
Benzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		< 0.020	
Toluene	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
ortho-Xylene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of TEX	S-VOCGMS01	0.150	mg/kg DW	<0.150		<0.150		<0.150	
Sum of BTEX	S-VOCGMS01	0.170	mg/kg DW	<0.170		<0.170		<0.170	
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Halogenated Volatile Organic Co	ompounds								
Dichlorodifluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Vinyl chloride	S-VOCGMS01	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Chloromethane	S-VOCGMS04	1.0	mg/kg DW	<1.0		<1.0		<1.0	
trans-1.2-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Bromomethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
Dichloromethane	S-VOCGMS01	0.80	mg/kg DW	<0.80		<0.80		<0.80	
1.1-Dichloroethene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chloroethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
cis-1.2-Dichloroethene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
Trichlorofluoromethane	S-VOCGMS04	0.10	mg/kg DW	<0.10		<0.10		<0.10	
1.1-Dichloroethane	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 46 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Result Mode Method LOR Unit Result MU Result MU Result Result M		111000 Regional s		1110000 Regional s	(2/2 +2/2	1110000 Duplicate 111000035	ent sample ID	Clie		Sub-Matrix: SOIL
Parameter Method LOR Unit Result MU Result MU Result Result MU Result Result Result MU Result R	185045	PR10101	5044	PR101018	5043	PR101018	ory sample ID	Laborato		
Bromochloromethane	010 15:12	07-APR-201	13:35	07-APR-201	09:59	07-APR-2010	ng date / time	lient sampli	С	
Bromochioromethane	MU	Result	MU	Result	MU	Result	Unit	LOR	Method	Parameter
Bromochioromethane									npounds - Continued	Halogenated Volatile Organic Com
2.20Lichtorpropane	-	<0.20		<0.20		<0.20	mg/kg DW	0.20		
1.1-Dichloropropylene S-VOCGMS04 0.10 mg/kg DW 40.10 — 40.10 — 40.10 — 40.10 1.2-Dichlorocethane S-VOCGMS01 0.100 mg/kg DW 40.100 — 40.100 — 40.100 — 40.100 Dibromomethane S-VOCGMS01 0.010 mg/kg DW 40.100 — 40.100 — 40.100 — 40.100 Dibromomethane S-VOCGMS04 0.10 mg/kg DW 40.10 — 40.10		<0.10		<0.10		<0.10	mg/kg DW	0.10	S-VOCGMS04	2.2-Dichloropropane
1.2-Dichloroethane S-VOCGMS01 0.010 mg/kg DW 40.100 — 40.1000 — 40.100 — 4	-	<0.030		<0.030		<0.030	mg/kg DW	0.030	S-VOCGMS01	Chloroform
1.1.1-Trichloroethane S-VOCGMS01 0.010 mg/kg DW <0.010	-	<0.10		<0.10		<0.10	mg/kg DW	0.10	S-VOCGMS04	1.1-Dichloropropylene
Dibromomethane S-VCCGMS04 O.10 mg/kg DW O.10 — O.10 — O.10 — O.10 O.		<0.100		<0.100		<0.100	mg/kg DW	0.100	S-VOCGMS01	1.2-Dichloroethane
cis-13-Dichloropropylene S-VCCGMS04 0.10 mg/kg DW -0.10 — <0.10		<0.010		<0.010		<0.010	mg/kg DW	0.010	S-VOCGMS01	1.1.1-Trichloroethane
Tetrachloromethane		<0.10		<0.10		<0.10	mg/kg DW	0.10	S-VOCGMS04	Dibromomethane
Bromodichloromethane		<0.10		<0.10		<0.10	mg/kg DW	0.10	S-VOCGMS04	cis-1.3-Dichloropropylene
trans-1.3-Dichloropropene S-VOCGMS04 0.10 mg/kg DW < 0.10 — 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020		<0.010		<0.010		<0.010	mg/kg DW	0.010	S-VOCGMS01	Tetrachloromethane
1.3-Dichloropropane	-								S-VOCGMS01	Bromodichloromethane
Trichioroethene									S-VOCGMS04	trans-1.3-Dichloropropene
1.1.2-Trichloroethane									S-VOCGMS04	1.3-Dichloropropane
1.2-Dibromoethane (EDB) S-VOCGMS04 0.10 mg/kg DW <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.02 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 —	±0.004	0.011		<0.010	-	<0.010	0 0		S-VOCGMS01	Trichloroethene
1.2.3-Trichloropropane	-					<0.040	mg/kg DW		S-VOCGMS01	1.1.2-Trichloroethane
Dibromochloromethane S-VOCGMS01 0.020 mg/kg DW <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.010 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.010 — <0.020	-						mg/kg DW		S-VOCGMS04	1.2-Dibromoethane (EDB)
Bromobenzene	-	<0.10		<0.10	-	<0.10	mg/kg DW		S-VOCGMS04	1.2.3-Trichloropropane
Tetrachloroethene S-VOCGMS01 0.020 mg/kg DW 0.032 ±0013 <0.020 0.035 1.1.1.2-Tetrachloroethane S-VOCGMS01 0.010 mg/kg DW <0.010	-			<0.020			mg/kg DW		S-VOCGMS01	Dibromochloromethane
1.1.1.2-Tetrachloroethane		<0.10		<0.10		<0.10			S-VOCGMS04	Bromobenzene
2-Chlorotoluene S-VOCGMS04 0.10 mg/kg DW <0.10 - <0.10 - <0.10 - <0.10 - <0.10 - <0.10 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.020 - <0.020 - <0.020 - <0.020 - <0.020 - <0.020 - <0.020 - <0.020 - <0.020 - <td>±0.014</td> <td></td> <td></td> <td></td> <td>±0.013</td> <td></td> <td></td> <td></td> <td>S-VOCGMS01</td> <td>Tetrachloroethene</td>	±0.014				±0.013				S-VOCGMS01	Tetrachloroethene
Chlorobenzene S-VOCGMS01 0.010 mg/kg DW <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010									S-VOCGMS01	1.1.1.2-Tetrachloroethane
### Achlorotoluene S-VOCGMS04 0.10 mg/kg DW <0.10 - <0.10 - <0.10 - <0.10 ### Bromoform S-VOCGMS01 0.040 mg/kg DW <0.040 - <0.040 - <0.040 - <0.040 - <0.040 ### S-VOCGMS01 0.00 mg/kg DW <0.010 - <0.010 - <0.010 - <0.010 ### S-VOCGMS01 0.00 mg/kg DW <0.020 - <0.020 - <0.020 - <0.020 ### S-VOCGMS01 0.00 mg/kg DW <0.020 - <0.020 - <0.020 - <0.020 ### S-VOCGMS01 0.00 mg/kg DW <0.020 - <0.020 - <0.020 - <0.020 ### S-VOCGMS01 0.00 mg/kg DW <0.010 - <0.010 - <0.010 - <0.010 - <0.010 ### S-VOCGMS01 0.00 mg/kg DW <0.020 - <0.020 - <0.020 - <0.020 ### S-VOCGMS01 0.00 mg/kg DW <0.020 - <0.020 - <0.020 - <0.020 ### S-VOCGMS01 0.00 mg/kg DW <0.020 - <0.020 - <0.020 - <0.020 ### S-VOCGMS01 0.00 mg/kg DW <0.020 - <0.020 - <0.020 - <0.020 ### S-VOCGMS01 0.00 mg/kg DW <0.030 - <0.030 - <0.030 - <0.030 ### S-VOCGMS01 0.00 mg/kg DW <0.030 - <0.030 - <0.030 - <0.030 ### S-VOCGMS01 0.00 mg/kg DW <0.030 - <0.030 - <0.030 - <0.030 ### S-VOCGMS01 0.00 mg/kg DW <0.020 - <0.020 - <0.020 - <0.020 - <0.020 ### S-VOCGMS01 0.00 mg/kg DW <0.050 - <0.050 - <0.050 - <0.050 ### S-VOCGMS01 0.00 mg/kg DW <0.050 - <0.050 - <0.050 - <0.050 ### S-VOCGMS01 0.00 mg/kg DW <0.050 - <0.050 - <0.050 - <0.050 ### S-VOCGMS01 0.00 mg/kg DW <0.050 - <0.050 - <0.050 - <0.050 ### S-VOCGMS01 0.00 mg/kg DW <0.010 - <0.010 - <0.010 - <0.010 ### Sopropylbenzene S-VOCGMS04 0.10 mg/kg DW <0.010 - <0.010 - <0.010 - <0.010 ### Sopropylbenzene S-VOCGMS04 0.10 mg/kg DW <0.010 - <0.010 - <0.010 - <0.010 ### Sopropylbenzene S-VOCGMS04 0.10 mg/kg DW <0.010 - <0.010 - <0.010 - <0.010 ### Sopropylbenzene S-VOCGMS04 0.10 mg/kg DW <0.010 - <0.010 - <0.010 - <0.010 - <0.010 ### Sopropylbenzene S-VOCGMS04 0.10 mg/kg DW <0.010 - <0.010 - <0.010 - <0.010 ### Sopropylbenzene S-VOCGMS04 0.10 mg/kg DW <0.010 - <0.010 - <0.010 - <0.010 - <0.010 ### Sopropylbenzene S-VOCGMS04 0.10 mg/kg DW <0.010 - <0.010 - <0.010 - <0.010 - <0.010 - <0.010 ### Sopropylbenzene S-VOCGMS04 0.10 mg/kg DW <0.010 - <0.010 - <0.0					-				S-VOCGMS04	2-Chlorotoluene
Bromoform		<0.010		<0.010			mg/kg DW		S-VOCGMS01	Chlorobenzene
1.1.2.2-Tetrachloroethane S-VOCGMS01 0.10 mg/kg DW <0.10									S-VOCGMS04	4-Chlorotoluene
1.2-Dichlorobenzene S-VOCGMS01 0.020 mg/kg DW <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.010 — <0.10 — <0.10 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030				<0.040			mg/kg DW		S-VOCGMS01	Bromoform
1.2-Dibromo-3-chloropropane S-VOCGMS04 0.10 mg/kg DW <0.10							mg/kg DW		S-VOCGMS01	1.1.2.2-Tetrachloroethane
1.4-Dichlorobenzene S-VOCGMS01 0.020 mg/kg DW <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.020 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.030 — <0.010 <0.010 — <0.010 <0.010 <0.020 — <0.020									S-VOCGMS01	1.2-Dichlorobenzene
1.3-Dichlorobenzene S-VOCGMS01 0.020 mg/kg DW <0.020									S-VOCGMS04	1.2-Dibromo-3-chloropropane
1.2.4-Trichlorobenzene S-VOCGMS01 0.030 mg/kg DW <0.030									S-VOCGMS01	1.4-Dichlorobenzene
Hexachlorobutadiene									S-VOCGMS01	
1.2.3-Trichlorobenzene S-VOCGMS01 0.020 mg/kg DW <0.020										1.2.4-Trichlorobenzene
1.3.5-Trichlorobenzene S-VOCGMS01 0.050 mg/kg DW <0.050										
1.2-Dichloropropane S-VOCGMS01 0.10 mg/kg DW <0.10 — <0.10 — <0.10 Sum of 3 Dichlorobenzenes S-VOCGMS01 0.060 mg/kg DW <0.060	-									
Sum of 3 Dichlorobenzenes S-VOCGMS01 0.060 mg/kg DW <0.060 — <0.060 — <0.060 — <0.060 — <0.060 — <0.060 — <0.060 — <0.060 — <0.060 — <0.060 — <0.060 — <0.060 — <0.010 — <0.110 — <0.110 — <0.110 — <0.110 — <0.110 — <0.110 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 —	-							1000000		1.3.5-Trichlorobenzene
Sum of 4 Trihalomethanes S-VOCGMS01 0.110 mg/kg DW <0.110 — <0.110 — <0.110 — <0.110 — <0.110 — <0.110 — <0.110 — <0.110 — <0.110 — <0.110 — <0.110 — <0.110 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0									S-VOCGMS01	1.2-Dichloropropane
Non-Halogenated Volatile Organic Compounds S-VOCGMS04 0.10 mg/kg DW <0.10 — <0.10 — <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10										
S-VOCGMS04 0.10 mg/kg DW <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 —	-	<0.110		<0.110		<0.110	mg/kg DW	0.110		
n-Propylbenzene S-VOCGMS04 0.10 mg/kg DW <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 <						0.40	4 514	0.40		
1.2.4-Trimethylbenzene S-VOCGMS04 0.10 mg/kg DW <0.10										
p-Isopropyltoluene S-VOCGMS04 0.10 mg/kg DW <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.040 — <0.040 — <0.040 — <0.040 — <0.040 — <0.040 — <0.040 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10										
1.3.5-Trimethylbenzene S-VOCGMS04 0.10 mg/kg DW <0.10 — <0.10 — <0.10 Styrene S-VOCGMS01 0.040 mg/kg DW <0.040 — <0.040 — <0.040 — <0.040 — <0.040 — <0.040 — <0.040 — <0.040 — <0.040 — <0.040 — <0.040 — <0.010 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 —										· · · · · · · · · · · · · · · · · · ·
Styrene S-VOCGMS01 0.040 mg/kg DW <0.040 — <0.040 — <0.040 — <0.040 — <0.040 — <0.040 — <0.040 — <0.040 — <0.040 — <0.040 — <0.010 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 — <0.10 <										1 17
sec-Butylbenzene S-VOCGMS04 0.10 mg/kg DW <0.10 <0.10 <0.10 tert-Butylbenzene S-VOCGMS04 0.10 mg/kg DW <0.10										
tert-Butylbenzene S-VOCGMS04 0.10 mg/kg DW <0.10 — <0.10 — <0.10 n-Butylbenzene S-VOCGMS04 0.10 mg/kg DW <0.10										
n-Butylbenzene S-VOCGMS04 0.10 mg/kg DW <0.10 — <0.10 — <0.10										
										•
Naphthalene S-VOCGMS04 0.10 mg/kg DW <0.10 — <0.10 — <0.10										<u> </u>
Methyl tert-Butyl Ether (MTBE) S-VOCGMS01 0.050 mg/kg DW <0.050 — <0.050 — <0.050										
tert-Butyl alcohol S-VOCGMS01 0.80 mg/kg DW <0.80 — <0.80 — <0.80 Sum of BTEXS S-VOCGMS01 0.210 mg/kg DW <0.210 — <0.210 — <0.210										
CHILD COMMON COM		<0.210		<0.210		<0.210	mg/kg DW	0.210		
Polycyclic Aromatics Hydrocarbons (PAHs) Naphthalene S-PAHGMS01 0.010 mg/kg DW <0.010 — <0.010 — <0.010	_	<0.010		<0.010		<0.010	ma/ka DM/	0.010		

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 : 20-APR-2010

 Page
 : 47 of 48

 Work Order
 : PR1010185

 Client
 : AmbiPar Control, LDa.

Sub-Matrix: SOIL		Client sample ID		111000043		111000044		111000045	
				Duplicate (2/2 111000035+2/2 111000043)		Regional sample		Regional sample	
		Laboratory sample ID Client sampling date / time		PR1010185043 07-APR-2010 09:59		PR1010185044 07-APR-2010 13:35		PR1010185045 07-APR-2010 15:12	
	(
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Polycyclic Aromatics Hydrocarbon	s (PAHs) - Continued								
Acenaphthylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	-
Acenaphthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluorene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Phenanthrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		0.028	±0.008	0.012	±0.004
Anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010	-	<0.010	
Fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		0.053	±0.016	0.039	±0.012
Pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		0.044	±0.013	0.033	±0.010
Benz(a)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		0.038	±0.011	0.019	±0.006
Chrysene	S-PAHGMS01	0.010	mg/kg DW	<0.010		0.035	±0.011	0.017	±0.005
Benzo(b)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		0.083	±0.025	0.026	±0.008
Benzo(k)fluoranthene	S-PAHGMS01	0.010	mg/kg DW	<0.010		0.036	±0.011	0.018	±0.005
Benzo(a)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		0.041	±0.012	0.019	±0.006
Indeno(1.2.3.cd)pyrene	S-PAHGMS01	0.010	mg/kg DW	<0.010		0.052	±0.016	0.038	±0.011
Benzo(g.h.i)perylene	S-PAHGMS01	0.010	mg/kg DW	<0.010		0.051	±0.015	0.031	±0.009
Dibenz(a.h)anthracene	S-PAHGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of 16 PAH	S-PAHGMS01	0.160	mg/kg DW	<0.160		0.461		0.252	
Sum of carcinogenic PAH	S-PAHGMS01	0.070	mg/kg DW	<0.070		0.285		0.137	
Sum of non carcinogenic PAH	S-PAHGMS01	0.090	mg/kg DW	<0.090		0.176		0.115	
PCBs									
PCB 28	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	-
PCB 52	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 101	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 118	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030	-	<0.0030	-
PCB 138	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 153	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 180	S-PCBECD04	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
Sum of 7 PCBs	S-PCBECD04	0.021	mg/kg DW	<0.021		<0.021	-	<0.021	
Petroleum Hydrocarbons									
C10 - C12 Fraction	S-TPHFID01	2	mg/kg DW	<2		<2		<2	
C10 - C40 Fraction	S-TPHFID01	20	mg/kg DW	29	±9	50	±15	<20	
C12 - C16 Fraction	S-TPHFID01	3	mg/kg DW	<3		<3		<3	
C16 - C35 Fraction	S-TPHFID01	10	mg/kg DW	25	±8	34	±10	<10	
C35 - C40 Fraction	S-TPHFID01	5	mg/kg DW	<5		16	±5	<5	

When date(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. Measurement uncertainty is expressed as expanded measurement uncertainty with coverage factor k = 2, representing 95% confidence level.

Key: LOR = Limit of reporting; MU = Measurement Uncertainty

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group

 Issue Date
 ; 20-APR-2010

 Page
 ; 48 of 48

 Work Order
 ; PR1010185

 Client
 ; AmbiPar Control, LDa.

Brief Method Summaries

Analytical Methods	Method Descriptions					
Location of test performa	nnce: Bendlova 1687/7 Ceska Lipa Czech Republic 470 03					
S-LI550GR	CZ_SOP_D06_07_047 Determination of loss on ignition in solid samples.					
S-PHI-PHO	CZ_SOP_D06_07_029 (CSN ISO 6439) Determination of phenol index in solid matrices (spectrophotometric method after distillation).					
*S-S04-GR	CSN 72 0117 Basic analysis of silicates - Determination of sulphate by gravimetry.					
Location of test performa	nnce: Na Harfe 336/9 Prague 9 - Vysocany Czech Republic 190 00					
S-DRY-GRCI	CZ_SOP_D06_01_045 (CSN ISO 11465) Determination of Dry Matter; CZ_SOP_D06_07_046 (CSN ISO 11465)					
	Determination of Dry Matter and Moisture in solid samples.					
S-METAXHB1	CZ_SOP_D06_02_001 (EPA 200.7,ISO 11885) Determination of elements by method of atomic emission spectrometry with					
	inductively coupled plasma.					
*S-NO3-SPC	CZ_SOP_D06_02_080 Determination of nitrite and ammonium ions by continuous flow analysis					
	(CFA)/CZ_SOP_D06_02_081_01 Determination of nitrite and nitrate by continuous flow analysis (CFA) (based on CSN ISO					
	11732, CSN ISO 13395). Measured in leach, recalculated for dry matter.					
S-PAHGMS01	CZ_SOP_D06_03_161 (EPA 8270, EPA 8131, EPA 8091, CSN EN ISO 6468) Determination of semivolatile organic					
	compounds by gas chromatography method with MS detection					
S-PCBECD04	CZ_SOP_D06_03_166 (DIN 38407, part 2, EPA 8082) Determination of polychlorinated biphenyls - congener analysis by gas					
	chromatography method with ECD detection					
S-TPHFID01	CZ SOP D06 03 150 (CSN EN 14039) Determination of hydrocarbons C10 - C40 by gas chromatography method with FID					
	detection					
S-VOCGMS01	CZ SOP D06 03 155 (EPA 624, EPA 8260) Determination of volatile organic compounds by gas chromatography method					
	with MS detection					
S-VOCGMS04	CZ SOP D06 03 155 (EPA 624, EPA 8260) Determination of volatile organic compounds by gas chromatography method					
	with MS detection					
W-NNO-SPC	CZ SOP D06 02 019 The determination of ammonia, nitrites and total oxidized nitrogen ions by discrete spectrophotometry					
	(based on CSN ISO 11732, CSN ISO 13395).					
W-NO2-SPC	CZ SOP D06 02 019 The determination of ammonia, nitrites and total oxidized nitrogen ions by discrete spectrophotometry					
	(based on CSN ISO 11732, CSN ISO 13395).					
W-NO3-SPC	CZ SOP D06 02 019 The determination of ammonia, nitrites and total oxidized nitrogen ions by discrete					
	spectrophotometry (based on CSN ISO 11732, CSN ISO 13395).					
Preparation Methods	Method Descriptions					
Location of test performa	nnce: Bendlova 1687/7 Ceska Lipa Czech Republic 470 03					
*S-PPHOM.07	CZ_SOP_D06_07_P01 Drying, sieving and pulverizing of sample on the grain size < 0.07 mm.					
*S-PPHOM0.3	CZ_SOP_D06_07_P01 Drying, sieving and pulverizing of sample on the grain size < 0.3 mm.					
*S-PPL24INS	CZ_SOP_D06_07_P03 Preparation of water leach. Solid to liquid ratio (S:L) was 1:10 (S in kg of dry matter).					
Location of test performs	nnce; Na Harfe 336/9 Prague 9 - Vysocany Czech Republic 190 00					
S-PPHOM2	Drying and sieving of sample on the grain size < 2 mm					

A `* symbol preceding any method indicates non-accredited test. In the case when a procedure belonging to an accredited method was used for non-accredited matrix, would apply that the reported results are non-accredited. Please refer to General Comment section on front page for information.

The calculation methods of summation parameters are available on request in the client service.

ALS Czech Republic, s.r.o.
Part of the ALS Laboratory Group